
localmoran.exact
provides exact local Moran's Ii tests under the null hypothesis, while localmoran.exact.alt
provides exact local Moran's Ii tests under the alternative hypothesis. In this case, the model may be a fitted model derived from a model fitted by errorsarlm
, with the covariance matrix can be passed through the Omega=
argument.
localmoran.exact(model, select, nb, glist = NULL, style = "W",
zero.policy = NULL, alternative = "greater", spChk = NULL,
resfun = weighted.residuals, save.Vi = FALSE, useTP=FALSE, truncErr=1e-6,
zeroTreat=0.1)
localmoran.exact.alt(model, select, nb, glist = NULL, style = "W",
zero.policy = NULL, alternative = "greater", spChk = NULL,
resfun = weighted.residuals, Omega = NULL, save.Vi = FALSE,
save.M = FALSE, useTP=FALSE, truncErr=1e-6, zeroTreat=0.1)
# S3 method for localmoranex
print(x, …)
# S3 method for localmoranex
as.data.frame(x, row.names=NULL, optional=FALSE, …)
an object of class lm
returned by lm
(assuming no global spatial autocorrelation), or an object of class sarlm
returned by a spatial simultaneous autoregressive model fit (assuming global spatial autocorrelation represented by the model spatial coefficient); weights may be specified in the lm
fit, but offsets should not be used
an integer vector of the id. numbers of zones to be tested; if missing, all zones
a list of neighbours of class nb
a list of general weights corresponding to neighbours
can take values W, B, C, and S
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
a character string specifying the alternative hypothesis, must be one of greater (default), less or two.sided.
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()
default: weighted.residuals; the function to be used to extract residuals from the lm
object, may be residuals
, weighted.residuals
, rstandard
, or rstudent
A SAR process matrix may be passed in to test an alternative hypothesis, for example Omega <- invIrW(listw, rho=0.1); Omega <- tcrossprod(Omega)
, chol()
is taken internally
if TRUE, return the star-shaped weights lists for each zone tested
if TRUE, save a list of left and right M products
default FALSE, if TRUE, use truncation point in integration rather than upper=Inf, see Tiefelsdorf (2000), eq. 6.7, p.69
when useTP=TRUE, pass truncation error to truncation point function
when useTP=TRUE, pass zero adjustment to truncation point function
object to be printed
ignored argument to as.data.frame.localmoranex
;
row names assigned from localmoranex object
ignored argument to as.data.frame.localmoranex
;
row names assigned from localmoranex object
arguments to be passed through
A list with class localmoranex
containing "select" lists, each with
class moranex
with the following components:
the value of the exact standard deviate of global Moran's I.
the p-value of the test.
the value of the observed local Moran's Ii.
a character string giving the method used.
a character string describing the alternative hypothesis.
eigenvalues (two extreme values for null, vector for alternative)
usually set to "E", but set to "N" if the integration leads to an out of domain value for qnorm
, when the Normal assumption is substituted. This only occurs when the output p-value would be very close to zero
a character string giving the name(s) of the data.
degrees of freedom
zone tested
zone tested
When the alternative is being tested, a list of left and right M products in attribute M.
Bivand RS, M<U+00FC>ller W, Reder M (2009) Power calculations for global and local Moran<U+2019>s I. Comput Stat Data Anal 53:2859<U+2013>2872; Bivand RS, Wong DWS 2018 Comparing implementations of global and local indicators of spatial association. TEST, 27(3), 716--748 https://doi.org/10.1007/s11749-018-0599-x
# NOT RUN {
eire <- st_read(system.file("shapes/eire.shp", package="spData")[1])
row.names(eire) <- as.character(eire$names)
st_crs(eire) <- "+proj=utm +zone=30 +ellps=airy +units=km"
eire.nb <- poly2nb(eire)
e.lm <- lm(OWNCONS ~ ROADACC, data=eire)
localmoran.sad(e.lm, nb=eire.nb)
localmoran.exact(e.lm, nb=eire.nb)
localmoran.exact(e.lm, nb=eire.nb, useTP=TRUE)
e.errorsar <- errorsarlm(OWNCONS ~ ROADACC, data=eire,
listw=nb2listw(eire.nb))
lm.target <- lm(e.errorsar$tary ~ e.errorsar$tarX - 1)
localmoran.exact.alt(lm.target, nb=eire.nb)
Omega <- invIrW(nb2listw(eire.nb), rho=0.6)
Omega1 <- tcrossprod(Omega)
localmoran.exact.alt(lm.target, nb=eire.nb, Omega=Omega1)
localmoran.exact.alt(lm.target, nb=eire.nb, Omega=Omega1, useTP=TRUE)
# }
Run the code above in your browser using DataLab