Learn R Programming

spdep (version 1.2-4)

mat2listw: Convert a square spatial weights matrix to a weights list object

Description

The function converts a square spatial weights matrix, optionally a sparse matrix to a weights list object, optionally adding region IDs from the row names of the matrix, as a sequence of numbers 1:nrow(x), or as given as an argument. The style can be imposed by rebuilting the weights list object internally.

Usage

mat2listw(x, row.names = NULL, style="M")

Value

A listw object with the following members:

style

"M", meaning matrix style, underlying style unknown, or assigned style argument in rebuilt object

neighbours

the derived neighbours list

weights

the weights for the neighbours derived from the matrix

Arguments

x

A square non-negative matrix with no NAs representing spatial weights; may be a matrix of class “sparseMatrix”

row.names

row names to use for region IDs

style

default "M", unknown style; if not "M", passed to nb2listw to re-build the object

Author

Roger Bivand Roger.Bivand@nhh.no

See Also

nb2listw, nb2mat

Examples

Run this code
columbus <- st_read(system.file("shapes/columbus.shp", package="spData")[1], quiet=TRUE)
col005 <- dnearneigh(st_coordinates(st_centroid(st_geometry(columbus),
 of_largest_polygon=TRUE)), 0, 0.5, as.character(columbus$NEIGNO))
summary(col005)
col005.w.mat <- nb2mat(col005, zero.policy=TRUE)
col005.w.b <- mat2listw(col005.w.mat)
summary(col005.w.b$neighbours)
diffnb(col005, col005.w.b$neighbours)
col005.w.mat.3T <- kronecker(diag(3), col005.w.mat)
col005.w.b.3T <- mat2listw(col005.w.mat.3T, style="W")
summary(col005.w.b.3T$neighbours)
run <- FALSE
if (require("spatialreg", quiet=TRUE)) run <- TRUE
if (run) {
W <- as(nb2listw(col005, style="W", zero.policy=TRUE), "CsparseMatrix")
col005.spM <- mat2listw(W)
summary(col005.spM$neighbours)
}
if (run) {
diffnb(col005, col005.spM$neighbours)
}
if (run && require("Matrix", quiet=TRUE)) {
IW <- kronecker(Diagonal(3), W)
col005.spM.3T <- mat2listw(IW, style="W")
summary(col005.spM.3T$neighbours)
}

Run the code above in your browser using DataLab