### loading data
bh <- st_read(system.file("etc/shapes/bhicv.shp",
package="spdep")[1], quiet=TRUE)
st_crs(bh) <- "+proj=longlat +ellps=WGS84"
### data standardized
dpad <- data.frame(scale(as.data.frame(bh)[,5:8]))
### neighboorhod list
bh.nb <- poly2nb(bh)
### calculating costs
lcosts <- nbcosts(bh.nb, dpad)
### making listw
nb.w <- nb2listw(bh.nb, lcosts, style="B")
### find a minimum spanning tree
mst.bh <- mstree(nb.w,5)
### the mstree plot
par(mar=c(0,0,0,0))
plot(st_geometry(bh), border=gray(.5))
plot(mst.bh, coordinates(as(bh, "Spatial")), col=2,
cex.lab=.6, cex.circles=0.035, fg="blue", add=TRUE)
### three groups with no restriction
res1 <- skater(mst.bh[,1:2], dpad, 2)
### groups size
table(res1$groups)
### the skater plot
opar <- par(mar=c(0,0,0,0))
plot(res1, coordinates(as(bh, "Spatial")), cex.circles=0.035, cex.lab=.7)
### the skater plot, using other colors
plot(res1, coordinates(as(bh, "Spatial")), cex.circles=0.035, cex.lab=.7,
groups.colors=heat.colors(length(res1$ed)))
### the Spatial Polygons plot
plot(st_geometry(bh), col=heat.colors(length(res1$edg))[res1$groups])
par(opar)
### EXPERT OPTIONS
### more one partition
res1b <- skater(res1, dpad, 1)
### length groups frequency
table(res1$groups)
table(res1b$groups)
### thee groups with minimum population
res2 <- skater(mst.bh[,1:2], dpad, 2, 200000, bh$Pop)
table(res2$groups)
### thee groups with minimun number of areas
res3 <- skater(mst.bh[,1:2], dpad, 2, 3, rep(1,nrow(bh)))
table(res3$groups)
### thee groups with minimun and maximun number of areas
res4 <- skater(mst.bh[,1:2], dpad, 2, c(20,50), rep(1,nrow(bh)))
table(res4$groups)
### if I want to get groups with 20 to 40 elements
res5 <- skater(mst.bh[,1:2], dpad, 2,
c(20,40), rep(1,nrow(bh))) ## DON'T MAKE DIVISIONS
table(res5$groups)
### In this MST don't have groups with this restrictions
### In this case, first I do one division
### with the minimun criteria
res5a <- skater(mst.bh[,1:2], dpad, 1, 20, rep(1,nrow(bh)))
table(res5a$groups)
### and do more one division with the full criteria
res5b <- skater(res5a, dpad, 1, c(20, 40), rep(1,nrow(bh)))
table(res5b$groups)
### and do more one division with the full criteria
res5c <- skater(res5b, dpad, 1, c(20, 40), rep(1,nrow(bh)))
table(res5c$groups)
### It don't have another divison with this criteria
res5d <- skater(res5c, dpad, 1, c(20, 40), rep(1,nrow(bh)))
table(res5d$groups)
if (FALSE) {
data(boston, package="spData")
bh.nb <- boston.soi
dpad <- data.frame(scale(boston.c[,c(7:10)]))
### calculating costs
system.time(lcosts <- nbcosts(bh.nb, dpad))
### making listw
nb.w <- nb2listw(bh.nb, lcosts, style="B")
### find a minimum spanning tree
mst.bh <- mstree(nb.w,5)
### three groups with no restriction
system.time(res1 <- skater(mst.bh[,1:2], dpad, 2))
library(parallel)
nc <- detectCores(logical=FALSE)
# set nc to 1L here
if (nc > 1L) nc <- 1L
coresOpt <- get.coresOption()
invisible(set.coresOption(nc))
if(!get.mcOption()) {
# no-op, "snow" parallel calculation not available
cl <- makeCluster(get.coresOption())
set.ClusterOption(cl)
}
### calculating costs
system.time(plcosts <- nbcosts(bh.nb, dpad))
all.equal(lcosts, plcosts, check.attributes=FALSE)
### making listw
pnb.w <- nb2listw(bh.nb, plcosts, style="B")
### find a minimum spanning tree
pmst.bh <- mstree(pnb.w,5)
### three groups with no restriction
system.time(pres1 <- skater(pmst.bh[,1:2], dpad, 2))
if(!get.mcOption()) {
set.ClusterOption(NULL)
stopCluster(cl)
}
all.equal(res1, pres1, check.attributes=FALSE)
invisible(set.coresOption(coresOpt))
}
Run the code above in your browser using DataLab