Learn R Programming

spdep (version 1.3-10)

choynowski: Choynowski probability map values

Description

Calculates Choynowski probability map values.

Usage

choynowski(n, x, row.names=NULL, tol = .Machine$double.eps^0.5, legacy=FALSE)

Value

A data frame with columns:

pmap

Poisson probability map values: probablility of getting a more ``extreme'' count than actually observed, one-tailed with less than expected and more than expected folded together

type

logical: TRUE if observed count less than expected

Arguments

n

a numeric vector of counts of cases

x

a numeric vector of populations at risk

row.names

row names passed through to output data frame

tol

accumulate values for observed counts >= expected until value less than tol

legacy

default FALSE using vectorised alternating side ppois version, if true use original version written from sources and iterating down to tol

Author

Roger Bivand Roger.Bivand@nhh.no

References

Choynowski, M (1959) Maps based on probabilities, Journal of the American Statistical Association, 54, 385--388; Cressie, N, Read, TRC (1985), Do sudden infant deaths come in clusters? Statistics and Decisions, Supplement Issue 2, 333--349; Bailey T, Gatrell A (1995) Interactive Spatial Data Analysis, Harlow: Longman, pp. 300--303.

See Also

probmap

Examples

Run this code
auckland <- st_read(system.file("shapes/auckland.gpkg", package="spData")[1], quiet=TRUE)
auckland.nb <- poly2nb(auckland)
res <- choynowski(auckland$M77_85, 9*auckland$Und5_81)
resl <- choynowski(auckland$M77_85, 9*auckland$Und5_81, legacy=TRUE)
all.equal(res, resl)
rt <- sum(auckland$M77_85)/sum(9*auckland$Und5_81)
ch_ppois_pmap <- numeric(length(auckland$Und5_81))
side <- c("greater", "less")
for (i in seq(along=ch_ppois_pmap)) {
  ch_ppois_pmap[i] <- poisson.test(auckland$M77_85[i], r=rt,
    T=(9*auckland$Und5_81[i]), alternative=side[(res$type[i]+1)])$p.value
}
all.equal(ch_ppois_pmap, res$pmap)
res1 <- probmap(auckland$M77_85, 9*auckland$Und5_81)
table(abs(res$pmap - res1$pmap) < 0.00001, res$type)
lt005 <- (res$pmap < 0.05) & (res$type)
ge005 <- (res$pmap < 0.05) & (!res$type)
cols <- rep("nonsig", length(lt005))
cols[lt005] <- "low"
cols[ge005] <- "high"
auckland$cols <- factor(cols)
plot(auckland[,"cols"], main="Probability map")

Run the code above in your browser using DataLab