nc.sids <- st_read(system.file("shapes/sids.gpkg", package="spData")[1], quiet=TRUE)
sidsrate79 <- (1000*nc.sids$SID79)/nc.sids$BIR79
dists <- c(10, 20, 30, 33, 40, 50, 60, 70, 80, 90, 100)
ndists <- length(dists)
ZG <- vector(mode="list", length=ndists)
names(ZG) <- as.character(dists)
milesxy <- cbind(nc.sids$east, nc.sids$north)
for (i in 1:ndists) {
thisnb <- dnearneigh(milesxy, 0, dists[i])
thislw <- nb2listw(thisnb, style="B", zero.policy=TRUE)
ZG[[i]] <- globalG.test(sidsrate79, thislw, zero.policy=TRUE)
}
t(sapply(ZG, function(x) c(x$estimate[1], x$statistic, p.value=unname(x$p.value))))
for (i in 1:ndists) {
thisnb <- dnearneigh(milesxy, 0, dists[i])
thislw <- nb2listw(thisnb, style="B", zero.policy=TRUE)
ZG[[i]] <- globalG.test(sidsrate79, thislw, zero.policy=TRUE, alternative="two.sided")
}
t(sapply(ZG, function(x) c(x$estimate[1], x$statistic, p.value=unname(x$p.value))))
data(oldcol)
crime <- COL.OLD$CRIME
is.na(crime) <- sample(1:length(crime), 10)
res <- try(globalG.test(crime, nb2listw(COL.nb, style="B"),
na.action=na.fail))
globalG.test(crime, nb2listw(COL.nb, style="B"), zero.policy=TRUE,
na.action=na.omit)
globalG.test(crime, nb2listw(COL.nb, style="B"), zero.policy=TRUE,
na.action=na.exclude)
try(globalG.test(crime, nb2listw(COL.nb, style="B"), na.action=na.pass))
Run the code above in your browser using DataLab