data(oldcol)
coords.OLD <- cbind(COL.OLD$X, COL.OLD$Y)
moran.test(COL.OLD$CRIME, nb2listw(COL.nb, style="W"))
moran.test(COL.OLD$CRIME, nb2listw(COL.nb, style="B"))
moran.test(COL.OLD$CRIME, nb2listw(COL.nb, style="C"))
moran.test(COL.OLD$CRIME, nb2listw(COL.nb, style="S"))
moran.test(COL.OLD$CRIME, nb2listw(COL.nb, style="W"),
randomisation=FALSE)
colold.lags <- nblag(COL.nb, 3)
moran.test(COL.OLD$CRIME, nb2listw(colold.lags[[2]],
style="W"))
moran.test(COL.OLD$CRIME, nb2listw(colold.lags[[3]],
style="W"))
print(is.symmetric.nb(COL.nb))
COL.k4.nb <- knn2nb(knearneigh(coords.OLD, 4))
print(is.symmetric.nb(COL.k4.nb))
moran.test(COL.OLD$CRIME, nb2listw(COL.k4.nb, style="W"))
moran.test(COL.OLD$CRIME, nb2listw(COL.k4.nb, style="W"),
randomisation=FALSE)
cat("Note: non-symmetric weights matrix, use listw2U()")
moran.test(COL.OLD$CRIME, listw2U(nb2listw(COL.k4.nb,
style="W")))
moran.test(COL.OLD$CRIME, listw2U(nb2listw(COL.k4.nb,
style="W")), randomisation=FALSE)
ranks <- rank(COL.OLD$CRIME)
names(ranks) <- rownames(COL.OLD)
moran.test(ranks, nb2listw(COL.nb, style="W"), rank=TRUE)
crime <- COL.OLD$CRIME
is.na(crime) <- sample(1:length(crime), 10)
res <- try(moran.test(crime, nb2listw(COL.nb, style="W"),
na.action=na.fail))
moran.test(crime, nb2listw(COL.nb, style="W"), zero.policy=TRUE,
na.action=na.omit)
moran.test(crime, nb2listw(COL.nb, style="W"), zero.policy=TRUE,
na.action=na.exclude)
moran.test(crime, nb2listw(COL.nb, style="W"), na.action=na.pass)
columbus <- st_read(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE)
col_geoms <- st_geometry(columbus)
col_geoms[1] <- st_buffer(col_geoms[1], dist=-0.05)
st_geometry(columbus) <- col_geoms
(nb1 <- poly2nb(columbus))
try(lw <- nb2listw(nb1, style="W"))
(lw <- nb2listw(nb1, style="W", zero.policy=TRUE))
moran.test(COL.OLD$CRIME, lw)
Run the code above in your browser using DataLab