library(splines2)
### example given in the reference paper by Ramsay (1988)
x <- seq.int(0, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)
msMat <- mSpline(x, knots = knots, degree = 2, intercept = TRUE)
op <- par(mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
plot(msMat, mark_knots = "internal")
## derivatives of M-splines
dmsMat <- mSpline(x, knots = knots, degree = 2,
intercept = TRUE, derivs = 1)
## or using the deriv method
dmsMat1 <- deriv(msMat)
stopifnot(all.equal(dmsMat, dmsMat1, check.attributes = FALSE))
### periodic M-splines
x <- seq.int(0, 3, 0.01)
bknots <- c(0, 1)
pMat <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE)
## integrals
iMat <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE, integral = TRUE)
## first derivatives by "derivs = 1"
dMat1 <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE, derivs = 1)
## first derivatives by using the deriv() method
dMat2 <- deriv(pMat)
par(mfrow = c(2, 2))
plot(pMat, ylab = "Periodic Basis", mark_knots = "boundary")
plot(iMat, ylab = "Integrals from 0")
abline(v = seq.int(0, max(x)), h = seq.int(0, max(x)), lty = 2, col = "grey")
plot(dMat1, ylab = "1st derivatives by 'derivs=1'", mark_knots = "boundary")
plot(dMat2, ylab = "1st derivatives by 'deriv()'", mark_knots = "boundary")
par(op) # reset to previous plotting settings
### default placement of internal knots for periodic splines
default_knots <- function(x, df, intercept = FALSE,
Boundary.knots = range(x, na.rm = TRUE)) {
## get x in the cyclic interval [0, 1)
x2 <- (x - Boundary.knots[1]) %% (Boundary.knots[2] - Boundary.knots[1])
knots <- quantile(x2, probs = seq(0, 1, length.out = df + 2 - intercept))
unname(knots[- c(1, length(knots))])
}
df <- 8
degree <- 3
intercept <- TRUE
internal_knots <- default_knots(x, df, intercept)
## 1. specify df
spline_basis1 = mSpline(x, degree = degree, df = df,
periodic = TRUE, intercept = intercept)
## 2. specify knots
spline_basis2 = mSpline(x, degree = degree, knots = internal_knots,
periodic = TRUE, intercept = intercept)
all.equal(internal_knots, knots(spline_basis1))
all.equal(spline_basis1, spline_basis2)
Run the code above in your browser using DataLab