# NOT RUN {
data(petrel)
rgokcv1 <- rgokcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5],
predacc = "ALL")
rgokcv1
n <- 20 # number of iterations, 60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
rgokcv1 <- rgokcv(petrel[, c(1,2)], petrel[, c(1,2,6:9)], petrel[, 5],
predacc = "VEcv")
VEcv [i] <- rgokcv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for RFOK", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)
n <- 20 # number of iterations, 60 to 100 is recommended.
measures <- NULL
for (i in 1:n) {
rgokcv1 <- rgokcv(petrel[, c(1,2)], petrel[, c(1,2,6:9)], petrel[, 5],
predacc = "ALL")
measures <- rbind(measures, rgokcv1$vecv)
}
plot(measures ~ c(1:n), xlab = "Iteration for RFOK", ylab = "VEcv (%)")
points(cumsum(measures) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(measures), col = 'blue', lwd = 2)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab