Augment accepts a fitted model object and a data set and adds
information about each observation in the data set. New columns always
begin with a .
prefix to avoid overwriting columns in the original
data set.
Augment behaves differently depending on whether the original data or new data
requires augmenting. Typically, when augmenting the original data, only the fitted
model object is specified, and when augmenting new data, the fitted model object
and newdata
is specified. When augmenting the original data, diagnostic
statistics are augmented to each row in the data set. When augmenting new data,
predictions and optional intervals or standard errors are augmented to each
row in the new data set.
# S3 method for splm
augment(
x,
drop = TRUE,
newdata = NULL,
se_fit = FALSE,
interval = c("none", "confidence", "prediction"),
level = 0.95,
local,
...
)# S3 method for spautor
augment(
x,
drop = TRUE,
newdata = NULL,
se_fit = FALSE,
interval = c("none", "confidence", "prediction"),
level = 0.95,
local,
...
)
# S3 method for spglm
augment(
x,
drop = TRUE,
newdata = NULL,
type.predict = c("link", "response"),
type.residuals = c("deviance", "pearson", "response"),
se_fit = FALSE,
interval = c("none", "confidence", "prediction"),
newdata_size,
level = 0.95,
local = local,
var_correct = TRUE,
...
)
# S3 method for spgautor
augment(
x,
drop = TRUE,
newdata = NULL,
type.predict = c("link", "response"),
type.residuals = c("deviance", "pearson", "response"),
se_fit = FALSE,
interval = c("none", "confidence", "prediction"),
newdata_size,
level = 0.95,
local,
var_correct = TRUE,
...
)
When augmenting the original data set, a tibble with additional columns
.fitted
Fitted value
.resid
Response residual (the difference between observed and fitted values)
.hat
Leverage (diagonal of the hat matrix)
.cooksd
Cook's distance
.std.resid
Standardized residuals
.se.fit
Standard error of the fitted value.
When augmenting a new data set, a tibble with additional columns
.fitted
Predicted (or fitted) value
.lower
Lower bound on interval
.upper
Upper bound on interval
.se.fit
Standard error of the predicted (or fitted) value
A fitted model object from splm()
or spautor()
.
A logical indicating whether to drop extra variables in the
fitted model object x
when augmenting. The default for drop
is TRUE
.
drop
is ignored if augmenting newdata
.
A data frame or tibble containing observations requiring prediction.
All of the original explanatory variables used to create the fitted model object x
must be present in newdata
. Defaults to NULL
, which indicates
that nothing has been passed to newdata
.
Logical indicating whether or not a .se.fit
column should
be added to augmented output. Passed to predict()
and
defaults to FALSE
.
Character indicating the type of confidence interval columns to
add to the augmented newdata
output. Passed to predict()
and defaults
to "none"
.
Tolerance/confidence level. The default is 0.95
.
A list or logical. If a list, specific list elements described
in predict.spmodel()
control the big data approximation behavior.
If a logical, TRUE
chooses default list elements for the list version
of local
as specified in predict.spmodel()
. Defaults to FALSE
,
which performs exact computations.
Other arguments. Not used (needed for generic consistency).
The scale (response
or link
) of fitted
values and predictions obtained using spglm()
or spgautor
objects.
The residual type (deviance
, pearson
, or response
)
of fitted models from spglm()
or spgautor
objects. Ignored if
newdata
is specified.
The size
value for each observation in newdata
used when predicting for the binomial family.
A logical indicating whether to return the corrected prediction
variances when predicting via models fit using spglm()
or spgautor()
. The default is
TRUE
.
augment()
returns a tibble with the same class as
data
. That is, if data
is
an sf
object, then the augmented object (obtained via augment(x)
)
will be an sf
object as well. When augmenting newdata
, the
augmented object has the same class as data
.
Missing response values from the original data can be augmented as if
they were a newdata
object by providing x$newdata
to the
newdata
argument (where x
is the name of the fitted model
object). This is the only way to compute predictions for
spautor()
and spgautor()
fitted model objects.
tidy.spmodel()
glance.spmodel()
predict.spmodel()
spmod <- splm(z ~ water + tarp,
data = caribou,
spcov_type = "exponential", xcoord = x, ycoord = y
)
augment(spmod)
spmod_sulf <- splm(sulfate ~ 1, data = sulfate, spcov_type = "exponential")
augment(spmod_sulf)
augment(spmod_sulf, newdata = sulfate_preds)
# missingness in original data
spmod_seal <- spautor(log_trend ~ 1, data = seal, spcov_type = "car")
augment(spmod_seal)
augment(spmod_seal, newdata = spmod_seal$newdata)
Run the code above in your browser using DataLab