Learn R Programming

spp (version 1.16.0)

spp-package: ChIP-seq (Solexa) Processing Pipeline

Description

A set of routines for reading short sequence alignments, calculating tag density, estimates of statistically significant enrichment/depletion along the chromosome, identifying point binding positions (peaks), and characterizing saturation properties related to sequencing depth.

Arguments

Details

Package: spp
Type: Package
Version: 1.11
Date: 2012-06-20
License: What license is it under?
LazyLoad: yes

See example below for typical processing sequence.y

References

Kharchenko P., Tolstorukov M., Park P. "Design and analysis of ChIP-seq experiments for DNA-binding proteins." Nature Biotech. doi:10.1038/nbt.1508

Examples

Run this code
# NOT RUN {
  # load the library
  library(spp);

  ## The following section shows how to initialize a cluster of 8 nodes for parallel processing
  ## To enable parallel processing, uncomment the next three lines, 
  #and comment out "cluster<-NULL";
  ## see "snow" package manual for details.
  #library(snow)
  #cluster <- makeCluster(2);
  #invisible(clusterCall(cluster,source,"routines.r"));
  cluster <- NULL;


  
  # read in tag alignments
  chip.data <- read.eland.tags("chip.eland.alignment");
  input.data <- read.eland.tags("input.eland.alignment");
  
  # get binding info from cross-correlation profile
  # srange gives the possible range for the size of the protected region;
  # srange should be higher than tag length; making the upper 
  #boundary too high will increase calculation time
  #
  # bin - bin tags within the specified number of basepairs to speed up calculation;
  # increasing bin size decreases the accuracy of the determined parameters
  binding.characteristics <- get.binding.characteristics(chip.data,
    srange=c(50,500),
    bin=5,
    cluster=cluster);


  # plot cross-correlation profile
  pdf(file="example.crosscorrelation.pdf",width=5,height=5)
  par(mar = c(3.5,3.5,1.0,0.5), mgp = c(2,0.65,0), cex = 0.8);
  plot(binding.characteristics$cross.correlation,
    type='l',
    xlab="strand shift",
    ylab="cross-correlation");
  abline(v=binding.characteristics$peak$x,lty=2,col=2)
  dev.off();
  
  # select informative tags based on the binding characteristics
  chip.data <- select.informative.tags(chip.data,binding.characteristics);
  input.data <- select.informative.tags(input.data,binding.characteristics);

  # restrict or remove positions with anomalous number of tags relative
  # to the local density
  chip.data <- remove.local.tag.anomalies(chip.data);
  input.data <- remove.local.tag.anomalies(input.data);


  # output smoothed tag density (subtracting re-scaled input) into a WIG file
  # note that the tags are shifted by half of the peak separation distance
  smoothed.density <- get.smoothed.tag.density(chip.data,
    control.tags=input.data,
    bandwidth=200,
    step=100,
    tag.shift=round(binding.characteristics$peak$x/2));

  writewig(smoothed.density,
    "example.density.wig","Example smoothed, background-subtracted tag density");

  rm(smoothed.density);

  # output conservative enrichment estimates
  # alpha specifies significance level at which confidence intervals will be estimated
  enrichment.estimates <- get.conservative.fold.enrichment.profile(chip.data,
    input.data,
    fws=2*binding.characteristics$whs,
    step=100,
    alpha=0.01);
  
  writewig(enrichment.estimates,
    "example.enrichment.estimates.wig",
    "Example conservative fold-enrichment/depletion estimates shown on log2 scale");
  rm(enrichment.estimates);


  # binding detection parameters
  # desired FDR. Alternatively, an E-value can be supplied to the 
  #method calls below instead of the fdr parameter
  fdr <- 1e-2; 
  # the binding.characteristics contains the optimized half-size for binding detection window
  detection.window.halfsize <- binding.characteristics$whs;
  
  # determine binding positions using wtd method
  bp <- find.binding.positions(signal.data=chip.data,
    control.data=input.data,
    fdr=fdr,
    method=tag.wtd,
    whs=detection.window.halfsize,
    cluster=cluster)

  # alternatively determined binding positions using lwcc 
  # method (note: this takes longer than wtd)
  # bp <- find.binding.positions(signal.data=chip.data,control.data=input.data,
  #fdr=fdr,method=tag.lwcc,whs=detection.window.halfsize,cluster=cluster)
  
  print(paste("detected",sum(unlist(lapply(bp$npl,function(d) length(d$x)))),"peaks"));
  
  # output detected binding positions
  output.binding.results(bp,"example.binding.positions.txt");


  # ------------------------------------------------------------------------------------------- 
  # the set of commands in the following section illustrates methods for saturation analysis
  # these are separated from the previous section, since they are highly CPU intensive
  # ------------------------------------------------------------------------------------------- 

  # determine MSER
  # note: this will take approximately 10-15x the amount of time the initial 
  # binding detection did
  # The saturation criteria here is 0.99 consistency in the set of binding 
  # positions when adding 1e5 tags.
  # To ensure convergence the number of subsampled chains (n.chains) should be higher (80)
  mser <- get.mser(chip.data,
    input.data,
    step.size=1e5,
    test.agreement=0.99,
    n.chains=8,
    cluster=cluster,
    fdr=fdr,
    method=tag.wtd,
    whs=detection.window.halfsize)
  
  print(paste("MSER at a current depth is",mser));
  
  # note: an MSER value of 1 or very near one implies that the set of
  # detected binding positions satisfies saturation criteria without
  # additional selection by fold-enrichment ratios. In other words, 
  # the dataset has reached saturation in a traditional sense (absolute saturation).

  # interpolate MSER dependency on tag count
  # note: this requires considerably more calculations than the previous 
  # steps (~ 3x more than the first MSER calculation)
  # Here we interpolate MSER dependency to determine a point at which MSER of 2 is reached
  # The interpolation will be based on the difference in MSER at the 
  # current depth, and a depth at 5e5 fewer tags (n.steps=6);
  # evaluation of the intermediate points is omitted here to 
  # speed up the calculation (excluded.steps parameter)
  # A total of 7 chains is used here to speed up calculation, 
  # whereas a higher number of chains (50) would give good convergence
  msers <- get.mser.interpolation(chip.data,
    input.data,
    step.size=1e5,
    test.agreement=0.99, 
    target.fold.enrichment=2,
    n.chains=7,
    n.steps=6,
    excluded.steps=c(2:4),
    cluster=cluster,
    fdr=fdr,
    method=tag.wtd,
    whs=detection.window.halfsize)

  print(paste("predicted sequencing depth =",
    round(unlist(lapply(msers,function(x) x$prediction))/1e6,5)," million tags"))
  

  # note: the interpolation will return NA prediction if the dataset 
  # has reached absolute saturation at the current depth.
  # note: use return.chains=T to also calculated random chains 
  # returned under msers$chains field) - these can be passed back as
  #       "get.mser.interpolation( ..., chains=msers$chains)" to calculate 
  #       predictions for another target.fold.enrichment value
  #        without having to recalculate the random chain predictions.

  ## stop cluster if it was initialized
  #stopCluster(cluster);  


  
# }

Run the code above in your browser using DataLab