pick_weightpars
picks the transition weight parameters from the given parameter vector.
pick_weightpars(
p,
M,
d,
params,
weight_function = c("relative_dens", "logistic", "mlogit", "exponential", "threshold",
"exogenous"),
weightfun_pars = NULL,
cond_dist = c("Gaussian", "Student", "ind_Student", "ind_skewed_t")
)
weight_function = "relative_dens"
:Returns a length \(M\) vector containing the transition weight parameters \(\alpha_{m}, m=1,...,M\), including the non-parametrized \(\alpha_{M}\).
weight_function="logistic"
:Returns a length two vector \((c,\gamma)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.
weight_function = "mlogit"
:Returns a length \((M-1)k\) vector \((\gamma_1,...,\gamma_M)\), where \(\gamma_m\) \((k\times 1)\), \(m=1,...,M-1\) (\(\gamma_M=0\)) contains the mlogit-regression coefficients of the \(m\)th regime. Specifically, for switching variables with indices in \(J\subset\lbrace 1,...,d\rbrace\), and with \(\tilde{p}\in\lbrace 1,...,p\rbrace\) lags included, \(\gamma_m\) contains the coefficients for the vector \(z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace})\), where \(\tilde{z}_{i} =(y_{j,t-1},...,y_{j,t-\tilde{p}})\), \(i\in I\). So \(k=1+|I|\tilde{p}\) where \(|I|\) denotes the number of elements in \(I\).
weight_function="exponential"
:Returns a length two vector \((c,\gamma)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.
weight_function="threshold"
:Returns a length \(M-1\) vector \((r_1,...,r_{M-1})\), where \(r_1,...,r_{M-1}\) are the threshold values.
weight_function="exogenous"
:Returns numeric(0)
.
the autoregressive order of the model
the number of regimes
the number of time series in the system, i.e., the dimension
a real valued vector specifying the parameter values. Should have the form \(\theta = (\phi_{1,0},...,\phi_{M,0},\varphi_1,...,\varphi_M,\sigma,\alpha,\nu)\), where (see exceptions below):
\(\phi_{m,0} = \) the \((d \times 1)\) intercept (or mean) vector of the \(m\)th regime.
\(\varphi_m = (vec(A_{m,1}),...,vec(A_{m,p}))\) \((pd^2 \times 1)\).
cond_dist="Gaussian"
or "Student"
:\(\sigma = (vech(\Omega_1),...,vech(\Omega_M))\) \((Md(d + 1)/2 \times 1)\).
cond_dist="ind_Student"
or "ind_skewed_t"
:\(\sigma = (vec(B_1),...,vec(B_M)\) \((Md^2 \times 1)\).
\(\alpha = \) the \((a\times 1)\) vector containing the transition weight parameters (see below).
cond_dist = "Gaussian")
:Omit \(\nu\) from the parameter vector.
cond_dist="Student"
:\(\nu > 2\) is the single degrees of freedom parameter.
cond_dist="ind_Student"
:\(\nu = (\nu_1,...,\nu_d)\) \((d \times 1)\), \(\nu_i > 2\).
cond_dist="ind_skewed_t"
:\(\nu = (\nu_1,...,\nu_d,\lambda_1,...,\lambda_d)\) \((2d \times 1)\), \(\nu_i > 2\) and \(\lambda_i \in (0, 1)\).
For models with...
weight_function="relative_dens"
:\(\alpha = (\alpha_1,...,\alpha_{M-1})\) \((M - 1 \times 1)\), where \(\alpha_m\) \((1\times 1), m=1,...,M-1\) are the transition weight parameters.
weight_function="logistic"
:\(\alpha = (c,\gamma)\) \((2 \times 1)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.
weight_function="mlogit"
:\(\alpha = (\gamma_1,...,\gamma_M)\) \(((M-1)k\times 1)\), where \(\gamma_m\) \((k\times 1)\), \(m=1,...,M-1\) contains the multinomial logit-regression coefficients of the \(m\)th regime. Specifically, for switching variables with indices in \(I\subset\lbrace 1,...,d\rbrace\), and with \(\tilde{p}\in\lbrace 1,...,p\rbrace\) lags included, \(\gamma_m\) contains the coefficients for the vector \(z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace})\), where \(\tilde{z}_{i} =(y_{it-1},...,y_{it-\tilde{p}})\), \(i\in I\). So \(k=1+|I|\tilde{p}\) where \(|I|\) denotes the number of elements in \(I\).
weight_function="exponential"
:\(\alpha = (c,\gamma)\) \((2 \times 1)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.
weight_function="threshold"
:\(\alpha = (r_1,...,r_{M-1})\) \((M-1 \times 1)\), where \(r_1,...,r_{M-1}\) are the threshold values.
weight_function="exogenous"
:Omit \(\alpha\) from the parameter vector.
identification="heteroskedasticity"
:\(\sigma = (vec(W),\lambda_2,...,\lambda_M)\), where \(W\) \((d\times d)\) and \(\lambda_m\) \((d\times 1)\), \(m=2,...,M\), satisfy \(\Omega_1=WW'\) and \(\Omega_m=W\Lambda_mW'\), \(\Lambda_m=diag(\lambda_{m1},...,\lambda_{md})\), \(\lambda_{mi}>0\), \(m=2,...,M\), \(i=1,...,d\).
Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th
regime, \(\Omega_{m}\) denotes the positive definite error term covariance matrix of the \(m\)th regime, and \(B_m\)
is the invertible \((d\times d)\) impact matrix of the \(m\)th regime. \(\nu_m\) is the degrees of freedom parameter
of the \(m\)th regime. If parametrization=="mean"
, just replace each \(\phi_{m,0}\) with regimewise mean
\(\mu_{m}\).
What type of transition weights \(\alpha_{m,t}\) should be used?
"relative_dens"
:\(\alpha_{m,t}= \frac{\alpha_mf_{m,dp}(y_{t-1},...,y_{t-p+1})}{\sum_{n=1}^M\alpha_nf_{n,dp}(y_{t-1},...,y_{t-p+1})}\), where \(\alpha_m\in (0,1)\) are weight parameters that satisfy \(\sum_{m=1}^M\alpha_m=1\) and \(f_{m,dp}(\cdot)\) is the \(dp\)-dimensional stationary density of the \(m\)th regime corresponding to \(p\) consecutive observations. Available for Gaussian conditional distribution only.
"logistic"
:\(M=2\), \(\alpha_{1,t}=1-\alpha_{2,t}\), and \(\alpha_{2,t}=[1+\exp\lbrace -\gamma(y_{it-j}-c) \rbrace]^{-1}\), where \(y_{it-j}\) is the lag \(j\) observation of the \(i\)th variable, \(c\) is a location parameter, and \(\gamma > 0\) is a scale parameter.
"mlogit"
:\(\alpha_{m,t}=\frac{\exp\lbrace \gamma_m'z_{t-1} \rbrace} {\sum_{n=1}^M\exp\lbrace \gamma_n'z_{t-1} \rbrace}\), where \(\gamma_m\) are coefficient vectors, \(\gamma_M=0\), and \(z_{t-1}\) \((k\times 1)\) is the vector containing a constant and the (lagged) switching variables.
"exponential"
:\(M=2\), \(\alpha_{1,t}=1-\alpha_{2,t}\), and \(\alpha_{2,t}=1-\exp\lbrace -\gamma(y_{it-j}-c) \rbrace\), where \(y_{it-j}\) is the lag \(j\) observation of the \(i\)th variable, \(c\) is a location parameter, and \(\gamma > 0\) is a scale parameter.
"threshold"
:\(\alpha_{m,t} = 1\) if \(r_{m-1}<y_{it-j}\leq r_{m}\) and \(0\) otherwise, where \(-\infty\equiv r_0<r_1<\cdots <r_{M-1}<r_M\equiv\infty\) are thresholds \(y_{it-j}\) is the lag \(j\) observation of the \(i\)th variable.
"exogenous"
:Exogenous nonrandom transition weights, specify the weight series in weightfun_pars
.
See the vignette for more details about the weight functions.
weight_function == "relative_dens"
:Not used.
weight_function %in% c("logistic", "exponential", "threshold")
:a numeric vector with the switching variable \(i\in\lbrace 1,...,d \rbrace\) in the first and the lag \(j\in\lbrace 1,...,p \rbrace\) in the second element.
weight_function == "mlogit"
:a list of two elements:
$vars
:a numeric vector containing the variables that should used as switching variables in the weight function in an increasing order, i.e., a vector with unique elements in \(\lbrace 1,...,d \rbrace\).
$lags
:an integer in \(\lbrace 1,...,p \rbrace\) specifying the number of lags to be used in the weight function.
weight_function == "exogenous"
:a size (nrow(data) - p
x M
) matrix containing the exogenous
transition weights as [t, m]
for time \(t\) and regime \(m\). Each row needs to sum to one and only weakly positive
values are allowed.
specifies the conditional distribution of the model as "Gaussian"
, "Student"
, "ind_Student"
,
or "ind_skewed_t"
, where "ind_Student"
the Student's \(t\) distribution with independent components, and
"ind_skewed_t"
is the skewed \(t\) distribution with independent components (see Hansen, 1994).
No argument checks!