Learn R Programming

sstvars (version 1.1.6)

pick_lambdas: Pick the structural parameter eigenvalues 'lambdas'

Description

pick_lambdas picks the structural parameters eigenvalue 'lambdas' from the parameter vector of a structural model identified by heteroskedasticity.

Usage

pick_lambdas(
  p,
  M,
  d,
  params,
  identification = c("reduced_form", "recursive", "heteroskedasticity",
    "non-Gaussianity")
)

Value

Returns the length (d*(M - 1)) vector \((\lambda_{2},...,\lambda_{M})\)

(see the argument params) for structural models identified by heteroskedasticity,

numeric(0) if \(M=1\), and NULL for other models.

Arguments

p

a positive integer specifying the autoregressive order

M

a positive integer specifying the number of regimes

params

a real valued vector specifying the parameter values. Should have the form \(\theta = (\phi_{1},...,\phi_{M},\varphi_1,...,\varphi_M,\sigma,\alpha,\nu)\), where (see exceptions below):

  • \(\phi_{m} = \) the \((d \times 1)\) intercept (or mean) vector of the \(m\)th regime.

  • \(\varphi_m = (vec(A_{m,1}),...,vec(A_{m,p}))\) \((pd^2 \times 1)\).

  • if cond_dist="Gaussian" or "Student":

    \(\sigma = (vech(\Omega_1),...,vech(\Omega_M))\) \((Md(d + 1)/2 \times 1)\).

    if cond_dist="ind_Student" or "ind_skewed_t":

    \(\sigma = (vec(B_1),...,vec(B_M)\) \((Md^2 \times 1)\).

  • \(\alpha = \) the \((a\times 1)\) vector containing the transition weight parameters (see below).

  • if cond_dist = "Gaussian"):

    Omit \(\nu\) from the parameter vector.

    if cond_dist="Student":

    \(\nu > 2\) is the single degrees of freedom parameter.

    if cond_dist="ind_Student":

    \(\nu = (\nu_1,...,\nu_d)\) \((d \times 1)\), \(\nu_i > 2\).

    if cond_dist="ind_skewed_t":

    \(\nu = (\nu_1,...,\nu_d,\lambda_1,...,\lambda_d)\) \((2d \times 1)\), \(\nu_i > 2\) and \(\lambda_i \in (0, 1)\).

For models with...

weight_function="relative_dens":

\(\alpha = (\alpha_1,...,\alpha_{M-1})\) \((M - 1 \times 1)\), where \(\alpha_m\) \((1\times 1), m=1,...,M-1\) are the transition weight parameters.

weight_function="logistic":

\(\alpha = (c,\gamma)\) \((2 \times 1)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.

weight_function="mlogit":

\(\alpha = (\gamma_1,...,\gamma_M)\) \(((M-1)k\times 1)\), where \(\gamma_m\) \((k\times 1)\), \(m=1,...,M-1\) contains the multinomial logit-regression coefficients of the \(m\)th regime. Specifically, for switching variables with indices in \(I\subset\lbrace 1,...,d\rbrace\), and with \(\tilde{p}\in\lbrace 1,...,p\rbrace\) lags included, \(\gamma_m\) contains the coefficients for the vector \(z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace})\), where \(\tilde{z}_{i} =(y_{it-1},...,y_{it-\tilde{p}})\), \(i\in I\). So \(k=1+|I|\tilde{p}\) where \(|I|\) denotes the number of elements in \(I\).

weight_function="exponential":

\(\alpha = (c,\gamma)\) \((2 \times 1)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.

weight_function="threshold":

\(\alpha = (r_1,...,r_{M-1})\) \((M-1 \times 1)\), where \(r_1,...,r_{M-1}\) are the thresholds.

weight_function="exogenous":

Omit \(\alpha\) from the parameter vector.

AR_constraints:

Replace \(\varphi_1,...,\varphi_M\) with \(\psi\) as described in the argument AR_constraints.

mean_constraints:

Replace \(\phi_{1},...,\phi_{M}\) with \((\mu_{1},...,\mu_{g})\) where \(\mu_i, \ (d\times 1)\) is the mean parameter for group \(i\) and \(g\) is the number of groups.

weight_constraints:

If linear constraints are imposed, replace \(\alpha\) with \(\xi\) as described in the argument weigh_constraints. If weight functions parameters are imposed to be fixed values, simply drop \(\alpha\) from the parameter vector.

identification="heteroskedasticity":

\(\sigma = (vec(W),\lambda_2,...,\lambda_M)\), where \(W\) \((d\times d)\) and \(\lambda_m\) \((d\times 1)\), \(m=2,...,M\), satisfy \(\Omega_1=WW'\) and \(\Omega_m=W\Lambda_mW'\), \(\Lambda_m=diag(\lambda_{m1},...,\lambda_{md})\), \(\lambda_{mi}>0\), \(m=2,...,M\), \(i=1,...,d\).

B_constraints:

For models identified by heteroskedasticity, replace \(vec(W)\) with \(\tilde{vec}(W)\) that stacks the columns of the matrix \(W\) in to vector so that the elements that are constrained to zero are not included. For models identified by non-Gaussianity, replace \(vec(B_1),...,vec(B_M)\) with similarly with vectorized versions \(B_m\) so that the elements that are constrained to zero are not included.

Above, \(\phi_{m}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th regime, \(\Omega_{m}\) denotes the positive definite error term covariance matrix of the \(m\)th regime, and \(B_m\) is the invertible \((d\times d)\) impact matrix of the \(m\)th regime. \(\nu_m\) is the degrees of freedom parameter of the \(m\)th regime. If parametrization=="mean", just replace each \(\phi_{m}\) with regimewise mean \(\mu_{m}\). \(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector. \(Bvec()\) is a vectorization operator that stacks the columns of a given impact matrix \(B_m\) into a vector so that the elements that are constrained to zero by the argument B_constraints are excluded.

identification

is it reduced form model or an identified structural model; if the latter, how is it identified (see the vignette or the references for details)?

"reduced_form":

Reduced form model.

"recursive":

The usual lower-triangular recursive identification of the shocks via their impact responses.

"heteroskedasticity":

Identification by conditional heteroskedasticity, which imposes constant relative impact responses for each shock.

"non-Gaussianity":

Identification by non-Gaussianity; requires mutually independent non-Gaussian shocks, thus, currently available only with the conditional distribution "ind_Student".

Details

Constrained parameter vectors are not supported. Not even constraints in \(W\)!

References

  • Lütkepohl H., Netšunajev A. 2017. Structural vector autoregressions with smooth transition in variances. Journal of Economic Dynamics & Control, 84, 43-57.