pick_weightpars picks the transition weight parameters from the given parameter vector.
pick_weightpars(
p,
M,
d,
params,
weight_function = c("relative_dens", "logistic", "mlogit", "exponential", "threshold",
"exogenous"),
weightfun_pars = NULL,
cond_dist = c("Gaussian", "Student", "ind_Student", "ind_skewed_t")
)weight_function = "relative_dens":Returns a length \(M\) vector containing the transition weight parameters \(\alpha_{m}, m=1,...,M\), including the non-parametrized \(\alpha_{M}\).
weight_function="logistic":Returns a length two vector \((c,\gamma)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.
weight_function = "mlogit":Returns a length \((M-1)k\) vector \((\gamma_1,...,\gamma_M)\), where \(\gamma_m\) \((k\times 1)\), \(m=1,...,M-1\) (\(\gamma_M=0\)) contains the mlogit-regression coefficients of the \(m\)th regime. Specifically, for switching variables with indices in \(J\subset\lbrace 1,...,d\rbrace\), and with \(\tilde{p}\in\lbrace 1,...,p\rbrace\) lags included, \(\gamma_m\) contains the coefficients for the vector \(z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace})\), where \(\tilde{z}_{i} =(y_{j,t-1},...,y_{j,t-\tilde{p}})\), \(i\in I\). So \(k=1+|I|\tilde{p}\) where \(|I|\) denotes the number of elements in \(I\).
weight_function="exponential":Returns a length two vector \((c,\gamma)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.
weight_function="threshold":Returns a length \(M-1\) vector \((r_1,...,r_{M-1})\), where \(r_1,...,r_{M-1}\) are the threshold values.
weight_function="exogenous":Returns numeric(0).
the autoregressive order of the model
the number of regimes
the number of time series in the system, i.e., the dimension
a real valued vector specifying the parameter values. Should have the form \(\theta = (\phi_{1},...,\phi_{M},\varphi_1,...,\varphi_M,\sigma,\alpha,\nu)\), where (see exceptions below):
\(\phi_{m} = \) the \((d \times 1)\) intercept (or mean) vector of the \(m\)th regime.
\(\varphi_m = (vec(A_{m,1}),...,vec(A_{m,p}))\) \((pd^2 \times 1)\).
cond_dist="Gaussian" or "Student":\(\sigma = (vech(\Omega_1),...,vech(\Omega_M))\) \((Md(d + 1)/2 \times 1)\).
cond_dist="ind_Student" or "ind_skewed_t":\(\sigma = (vec(B_1),...,vec(B_M)\) \((Md^2 \times 1)\).
\(\alpha = \) the \((a\times 1)\) vector containing the transition weight parameters (see below).
cond_dist = "Gaussian"):Omit \(\nu\) from the parameter vector.
cond_dist="Student":\(\nu > 2\) is the single degrees of freedom parameter.
cond_dist="ind_Student":\(\nu = (\nu_1,...,\nu_d)\) \((d \times 1)\), \(\nu_i > 2\).
cond_dist="ind_skewed_t":\(\nu = (\nu_1,...,\nu_d,\lambda_1,...,\lambda_d)\) \((2d \times 1)\), \(\nu_i > 2\) and \(\lambda_i \in (0, 1)\).
For models with...
weight_function="relative_dens":\(\alpha = (\alpha_1,...,\alpha_{M-1})\) \((M - 1 \times 1)\), where \(\alpha_m\) \((1\times 1), m=1,...,M-1\) are the transition weight parameters.
weight_function="logistic":\(\alpha = (c,\gamma)\) \((2 \times 1)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.
weight_function="mlogit":\(\alpha = (\gamma_1,...,\gamma_M)\) \(((M-1)k\times 1)\), where \(\gamma_m\) \((k\times 1)\), \(m=1,...,M-1\) contains the multinomial logit-regression coefficients of the \(m\)th regime. Specifically, for switching variables with indices in \(I\subset\lbrace 1,...,d\rbrace\), and with \(\tilde{p}\in\lbrace 1,...,p\rbrace\) lags included, \(\gamma_m\) contains the coefficients for the vector \(z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace})\), where \(\tilde{z}_{i} =(y_{it-1},...,y_{it-\tilde{p}})\), \(i\in I\). So \(k=1+|I|\tilde{p}\) where \(|I|\) denotes the number of elements in \(I\).
weight_function="exponential":\(\alpha = (c,\gamma)\) \((2 \times 1)\), where \(c\in\mathbb{R}\) is the location parameter and \(\gamma >0\) is the scale parameter.
weight_function="threshold":\(\alpha = (r_1,...,r_{M-1})\) \((M-1 \times 1)\), where \(r_1,...,r_{M-1}\) are the threshold values.
weight_function="exogenous":Omit \(\alpha\) from the parameter vector.
identification="heteroskedasticity":\(\sigma = (vec(W),\lambda_2,...,\lambda_M)\), where \(W\) \((d\times d)\) and \(\lambda_m\) \((d\times 1)\), \(m=2,...,M\), satisfy \(\Omega_1=WW'\) and \(\Omega_m=W\Lambda_mW'\), \(\Lambda_m=diag(\lambda_{m1},...,\lambda_{md})\), \(\lambda_{mi}>0\), \(m=2,...,M\), \(i=1,...,d\).
Above, \(\phi_{m}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th
regime, \(\Omega_{m}\) denotes the positive definite error term covariance matrix of the \(m\)th regime, and \(B_m\)
is the invertible \((d\times d)\) impact matrix of the \(m\)th regime. \(\nu_m\) is the degrees of freedom parameter
of the \(m\)th regime. If parametrization=="mean", just replace each \(\phi_{m}\) with regimewise mean
\(\mu_{m}\).
What type of transition weights \(\alpha_{m,t}\) should be used?
"relative_dens":\(\alpha_{m,t}= \frac{\alpha_mf_{m,dp}(y_{t-1},...,y_{t-p+1})}{\sum_{n=1}^M\alpha_nf_{n,dp}(y_{t-1},...,y_{t-p+1})}\), where \(\alpha_m\in (0,1)\) are weight parameters that satisfy \(\sum_{m=1}^M\alpha_m=1\) and \(f_{m,dp}(\cdot)\) is the \(dp\)-dimensional stationary density of the \(m\)th regime corresponding to \(p\) consecutive observations. Available for Gaussian conditional distribution only.
"logistic":\(M=2\), \(\alpha_{1,t}=1-\alpha_{2,t}\), and \(\alpha_{2,t}=[1+\exp\lbrace -\gamma(y_{it-j}-c) \rbrace]^{-1}\), where \(y_{it-j}\) is the lag \(j\) observation of the \(i\)th variable, \(c\) is a location parameter, and \(\gamma > 0\) is a scale parameter.
"mlogit":\(\alpha_{m,t}=\frac{\exp\lbrace \gamma_m'z_{t-1} \rbrace} {\sum_{n=1}^M\exp\lbrace \gamma_n'z_{t-1} \rbrace}\), where \(\gamma_m\) are coefficient vectors, \(\gamma_M=0\), and \(z_{t-1}\) \((k\times 1)\) is the vector containing a constant and the (lagged) switching variables.
"exponential":\(M=2\), \(\alpha_{1,t}=1-\alpha_{2,t}\), and \(\alpha_{2,t}=1-\exp\lbrace -\gamma(y_{it-j}-c) \rbrace\), where \(y_{it-j}\) is the lag \(j\) observation of the \(i\)th variable, \(c\) is a location parameter, and \(\gamma > 0\) is a scale parameter.
"threshold":\(\alpha_{m,t} = 1\) if \(r_{m-1}<y_{it-j}\leq r_{m}\) and \(0\) otherwise, where \(-\infty\equiv r_0<r_1<\cdots <r_{M-1}<r_M\equiv\infty\) are thresholds \(y_{it-j}\) is the lag \(j\) observation of the \(i\)th variable.
"exogenous":Exogenous nonrandom transition weights, specify the weight series in weightfun_pars.
See the vignette for more details about the weight functions.
weight_function == "relative_dens":Not used.
weight_function %in% c("logistic", "exponential", "threshold"):a numeric vector with the switching variable \(i\in\lbrace 1,...,d \rbrace\) in the first and the lag \(j\in\lbrace 1,...,p \rbrace\) in the second element.
weight_function == "mlogit":a list of two elements:
$vars:a numeric vector containing the variables that should used as switching variables in the weight function in an increasing order, i.e., a vector with unique elements in \(\lbrace 1,...,d \rbrace\).
$lags:an integer in \(\lbrace 1,...,p \rbrace\) specifying the number of lags to be used in the weight function.
weight_function == "exogenous":a size (nrow(data) - p x M) matrix containing the exogenous
transition weights as [t, m] for time \(t\) and regime \(m\). Each row needs to sum to one and only weakly positive
values are allowed.
specifies the conditional distribution of the model as "Gaussian", "Student", "ind_Student",
or "ind_skewed_t", where "ind_Student" the Student's \(t\) distribution with independent components, and
"ind_skewed_t" is the skewed \(t\) distribution with independent components (see Hansen, 1994).
No argument checks!