require(stacomiR)
# launching stacomi without selecting the scheme or interface
stacomi(
database_expected=FALSE, sch='iav')
# this requires a working database with the schema iav
# prompt for user and password but you can set appropriate options for host, port and dbname
if (FALSE) {
stacomi(
database_expected=TRUE, sch='iav')
if (interactive()){
if (!exists("user")){
user <- readline(prompt="Enter user: ")
password <- readline(prompt="Enter password: ")
}
}
options(
stacomiR.dbname = "bd_contmig_nat",
stacomiR.host ="localhost",
stacomiR.port = "5432",
stacomiR.user = user,
stacomiR.user = password
)
#create an instance of the class
r_gew<-new("report_ge_weight")
r_gew@liste<-charge(object=r_gew@liste,listechoice=c("=1",">1","tous"),label="")
# here I'm using weights when number are larger than 1i.e.wet weight
# always choose a date from one year to the next eg 2010 to 2011
# as the dates are from august to august
r_gew<-choice_c(r_gew,
dc=c(6),
start_year="2009",
end_year="2015",
selectedvalue=">1",
silent=FALSE)
r_gew<-connect(r_gew)
r_gew<-calcule(r_gew)
}
# load the dataset generated by previous lines
data("r_gew")
# the calculation will fill the slot calcdata
# A ggplot showing the trend in weight
plot(r_gew, plot.type=1)
# A plot showing both the data and the trend as recorded in the database
plot(r_gew, plot.type=2)
# Same as plot.type=1 but with size according to size of the sample,
# usefull for wet weights where weight are recorded on a number of glass eel
plot(r_gew, plot.type=3)
if (FALSE) {
# First model with nls, see Guerault and Desaunay (1993)
model(r_gew,model.type="seasonal")
model(r_gew,model.type="seasonal1")
}
Run the code above in your browser using DataLab