library(stagedtrees)
data_model <- sevt(list(
Sex = c("Female", "Male"),
Age = c(
"0-39", "40-49", "50-59", "60-69",
"70-79", "80+"
),
ICU = c("yes", "no"),
death = c("yes", "no")
), full = TRUE)
data_model$prob <- list()
data_model$prob$Sex <- list("1" = c(Female = 0.45185, Male = 0.54815))
dist_age_male <- c(
0.01616346, # 0 - 39
0.04159445, # 40 - 49
0.10130439, # 50 - 59
0.16825686, # 60 - 69
0.25217550, # 70 - 79
0.42050534
) # 80+
dist_age_female <- c(
0.01688613, # 0 - 39
0.04271329, # 40 - 49
0.10131681, # 50 - 59
0.16841872, # 60 - 69
0.25289366, # 70 - 79
0.41777138
) # 80+
names(dist_age_male) <- data_model$tree$Age
names(dist_age_female) <- data_model$tree$Age
data_model$prob$Age <- list(
"1" = dist_age_female,
"2" = dist_age_male
)
data_model$prob$ICU <- list(
"1" = c(yes = 0.125, no = 1 - 0.125), # Female 0-39
"2" = c(yes = 0.149, no = 1 - 0.149), # Female 40-49
"3" = c(yes = 0.193, no = 1 - 0.193), # Female 50-59
"4" = c(yes = 0.225, no = 1 - 0.225), # Female 60-69
"5" = c(yes = 0.175, no = 1 - 0.175), # Female 70-79
"6" = c(yes = 0.037, no = 1 - 0.037), # Female 80+
"7" = c(yes = 0.197, no = 1 - 0.197), # Male 0-39
"8" = c(yes = 0.2687, no = 1 - 0.2687), # Male 40-49
"9" = c(yes = 0.3171, no = 1 - 0.3171), # Male 50-59
"10" = c(yes = 0.3415, no = 1 - 0.3415), # Male 60-69
"11" = c(yes = 0.274, no = 1 - 0.274), # Male 70-79
"12" = c(yes = 0.073, no = 1 - 0.073) # Male 80+
)
data_model$prob$death <- list(
################### FEMALE ################################
"1" = c(yes = 0.077, no = 1 - 0.077), # Female 0-39 ICU
"2" = c(yes = 0.004, no = 1 - 0.004), # Female 0-39 no-ICU
"3" = c(yes = 0.117, no = 1 - 0.117), # Female 40-49 ICU
"4" = c(yes = 0.017, no = 1 - 0.017), # Female 40-49 no-ICU
"5" = c(yes = 0.185, no = 1 - 0.185), # Female 50-59 ICU
"6" = c(yes = 0.030, no = 1 - 0.030), # Female 50-59 no-ICU
"7" = c(yes = 0.239, no = 1 - 0.239), # Female 60-69 ICU
"8" = c(yes = 0.058, no = 1 - 0.058), # Female 60-69 no-ICU
"9" = c(yes = 0.324, no = 1 - 0.324), # Female 70-79 ICU
"10" = c(yes = 0.124, no = 1 - 0.124), # Female 70-79 no-ICU
"11" = c(yes = 0.454, no = 1 - 0.454), # Female 80+ ICU
"12" = c(yes = 0.266, no = 1 - 0.266), # Female 80+ no-ICU
################# MALE ##################################
"13" = c(yes = 0.079, no = 1 - 0.079), # Male 0-39 ICU
"14" = c(yes = 0.008, no = 1 - 0.008), # Male 0-39 no-ICU
"15" = c(yes = 0.098, no = 1 - 0.098), # Male 40-49 ICU
"16" = c(yes = 0.016, no = 1 - 0.016), # Male 40-49 no-ICU
"17" = c(yes = 0.171, no = 1 - 0.171), # Male 50-59 ICU
"18" = c(yes = 0.030, no = 1 - 0.030), # Male 50-59 no-ICU
"19" = c(yes = 0.278, no = 1 - 0.278), # Male 60-69 ICU
"20" = c(yes = 0.067, no = 1 - 0.067), # Male 60-69 no-ICU
"21" = c(yes = 0.383, no = 1 - 0.383), # Male 70-79 ICU
"22" = c(yes = 0.150, no = 1 - 0.150), # Male 70-79 no-ICU
"23" = c(yes = 0.478, no = 1 - 0.478), # Male 80+ ICU
"24" = c(yes = 0.363, no = 1 - 0.363) # Male 80+ no-ICU
)
# covid_patients <- sample_from(data_model, 10000, seed = 123)
# usethis::use_data(covid_patients, overwrite = TRUE)
Run the code above in your browser using DataLab