Learn R Programming

starma (version 1.3)

summary.starma: Summary method for space-time series fitted models

Description

summary method for class "starma".

Usage

"summary"(object, ...) "print"(x, ...)

Arguments

object
a starma class object.
x
a summary.starma class object.
...
unused

Value

An object of class summary.starma containing the following elements:
call
An object of mode "call": a symbolic description of the fitted model
coefficients
A data frame containing the estimates, standard errors, etc. of the coefficients of the fitted model

Details

print.summary.starma formats the coefficients, standard errors, etc. and additionally gives 'significance stars'.

Examples

Run this code
data(nb_mat)	# Get neighbourhood matrices

# Simulate a STARMA model
eps <- matrix(rnorm(94*200), 200, 94)
sim <- eps
for (t in 3:200) {
	sim[t,] <- (.4*diag(94) + .25*blist[[2]]) %*% sim[t-1,] +
		(.25*diag(94)                ) %*% sim[t-2,] +
		(            - .3*blist[[2]]) %*% eps[t-1,] +
		eps[t, ]
}

sim <- sim[101:200,]
sim <- stcenter(sim)	# Center and scale the dataset

# Select parameters to estimate
ar <- matrix(0, 2, 2)
ar[ ,1] <- 1	# phi10 and phi20
ar[1,2] <- 1	# phi11
ma <- matrix(c(0,1), 1, 2)	# theta11

# Run the Kalman filter algorithm
model <- starma(sim, blist, ar, ma)

# Get summary
summary(model)

Run the code above in your browser using DataLab