# aggregate time dimension in format Date
tif = system.file("tif/L7_ETMs.tif", package = "stars")
t1 = as.Date("2018-07-31")
x = read_stars(c(tif, tif, tif, tif), along = list(time = c(t1, t1+1, t1+2, t1+3)))[,1:30,1:30]
st_get_dimension_values(x, "time")
x_agg_time = aggregate(x, by = t1 + c(0, 2, 4), FUN = max)
# aggregate time dimension in format Date - interval
by_t = "2 days"
x_agg_time2 = aggregate(x, by = by_t, FUN = max)
st_get_dimension_values(x_agg_time2, "time")
#TBD:
#x_agg_time - x_agg_time2
# aggregate time dimension in format POSIXct
x = st_set_dimensions(x, 4, values = as.POSIXct(c("2018-07-31",
"2018-08-01",
"2018-08-02",
"2018-08-03")),
names = "time")
by_t = as.POSIXct(c("2018-07-31", "2018-08-02"))
x_agg_posix = aggregate(x, by = by_t, FUN = max)
st_get_dimension_values(x_agg_posix, "time")
#TBD:
# x_agg_time - x_agg_posix
aggregate(x, "2 days", mean)
if (require(ncmeta, quietly = TRUE)) {
# Spatial aggregation, see https://github.com/r-spatial/stars/issues/299
prec_file = system.file("nc/test_stageiv_xyt.nc", package = "stars")
prec = read_ncdf(prec_file, curvilinear = c("lon", "lat"))
prec_slice = dplyr::slice(prec, index = 17, along = "time")
nc = sf::read_sf(system.file("gpkg/nc.gpkg", package = "sf"), "nc.gpkg")
nc = st_transform(nc, st_crs(prec_slice))
agg = aggregate(prec_slice, st_geometry(nc), mean)
plot(agg)
}
# example of using a function for "by": aggregate by month-of-year
d = c(10, 10, 150)
a = array(rnorm(prod(d)), d) # pure noise
times = Sys.Date() + seq(1, 2000, length.out = d[3])
m = as.numeric(format(times, "%m"))
signal = rep(sin(m / 12 * pi), each = prod(d[1:2])) # yearly period
s = (st_as_stars(a) + signal) %>%
st_set_dimensions(3, values = times)
f = function(x, format = "%B") {
months = format(as.Date(paste0("01-", 1:12, "-1970")), format)
factor(format(x, format), levels = months)
}
agg = aggregate(s, f, mean)
plot(agg)
Run the code above in your browser using DataLab