glmgam.fit(X, y, coef.start=NULL, tol=1e-6, maxit=50, trace=FALSE)
glmnb.fit(X, y, dispersion, weights=NULL, offset=0, coef.start=NULL, start.method="mean", tol=1e-6, maxit=50, trace=FALSE)
"mean"
and "log(y)"
TRUE
then output diagnostic information at each iteration.glmgam.fit
is in principle similar to glm.fit(X,y,family=Gamma(link="identity"))
but with much more secure convergence.
This function is used by mixedModel2Fit
.
glmnb.fit
is in principle similar to glm.fit(X,y,family=negative.binomial(link="log",theta=1/dispersion))
but with more secure convergence.
y <- rgamma(10,shape=5)
X <- cbind(1,1:10)
fit <- glmgam.fit(X,y,trace=TRUE)
Run the code above in your browser using DataLab