Usage
dinvgauss(x, mean=1, shape=NULL, dispersion=1, log=FALSE)
pinvgauss(q, mean=1, shape=NULL, dispersion=1, lower.tail=TRUE, log.p=FALSE)
qinvgauss(p, mean=1, shape=NULL, dispersion=1, lower.tail=TRUE, log.p=FALSE, maxit=200L, tol=1e-14, trace=FALSE)
rinvgauss(n, mean=1, shape=NULL, dispersion=1)
Arguments
p
vector of probabilities.
n
sample size. If length(n)
is larger than 1, then length(n)
random values are returned.
mean
vector of (positive) means.
shape
vector of (positive) shape parameters.
dispersion
vector of (positive) dispersion parameters. Ignored if shape
is not NULL
, in which case dispersion=1/shape
.
lower.tail
logical; if TRUE
, probabilities are P(Xq).
log
logical; if TRUE
, the log-density is returned.
log.p
logical; if TRUE
, probabilities are on the log-scale.
maxit
maximum number of Newton iterations used to find q
.
tol
small positive numeric value giving the convergence tolerance for the quantile.
trace
logical, if TRUE
then the working estimate for q
from each iteration will be output.