Learn R Programming

statpsych (version 1.7.0)

ci.stdmean.strat: Confidence intervals for a 2-group standardized mean difference with stratified sampling

Description

Computes confidence intervals for a population standardized mean difference in a 2-group nonexperimental design with stratified random sampling (a random sample of a specified size from each subpopulation) using a square root weighted variance standardizer or single group standard deviation standardizer. Equality of variances is not assumed.

Usage

ci.stdmean.strat(alpha, m1, m2, sd1, sd2, n1, n2, p1)

Value

Returns a 3-row matrix. The columns are:

  • Estimate - estimated standardized mean difference

  • adj Estimate - bias adjusted standardized mean difference estimate

  • SE - standard error

  • LL - lower limit of the confidence interval

  • UL - upper limit of the confidence interval

Arguments

alpha

alpha level for 1-alpha confidence

m1

estimated mean for group 1

m2

estimated mean for group 2

sd1

estimated standard deviation for group 1

sd2

estimated standard deviation for group 2

n1

sample size for group 1

n2

sample size for group 2

p1

proportion of total population in subpopulation 1

References

Bonett2020astatpsych

Examples

Run this code
ci.stdmean.strat(.05, 33.2, 30.8, 10.5, 11.2, 200, 200, .533)

# Should return:
#                         Estimate  adj Estimate         SE         LL        UL
# Weighted standardizer: 0.2215549     0.2211371 0.10052057 0.02453817 0.4185716
# Group 1 standardizer:  0.2285714     0.2277089 0.10427785 0.02419059 0.4329523
# Group 2 standardizer:  0.2142857     0.2277089 0.09776049 0.02267868 0.4058927


Run the code above in your browser using DataLab