Learn R Programming

stats (version 3.3)

SSmicmen: Self-Starting Nls Michaelis-Menten Model

Description

This selfStart model evaluates the Michaelis-Menten model and its gradient. It has an initial attribute that will evaluate initial estimates of the parameters Vm and K

Usage

SSmicmen(input, Vm, K)

Arguments

input
a numeric vector of values at which to evaluate the model.
Vm
a numeric parameter representing the maximum value of the response.
K
a numeric parameter representing the input value at which half the maximum response is attained. In the field of enzyme kinetics this is called the Michaelis parameter.

Value

  • a numeric vector of the same length as input. It is the value of the expression Vm*input/(K+input). If both the arguments Vm and K are names of objects, the gradient matrix with respect to these names is attached as an attribute named gradient.

encoding

UTF-8

See Also

nls, selfStart

Examples

Run this code
PurTrt <- Puromycin[ Puromycin$state == "treated", ]
SSmicmen(PurTrt$conc, 200, 0.05)  # response only
Vm <- 200; K <- 0.05
SSmicmen(PurTrt$conc, Vm, K)      # response and gradient
print(getInitial(rate ~ SSmicmen(conc, Vm, K), data = PurTrt), digits = 3)
## Initial values are in fact the converged values
fm1 <- nls(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)
summary(fm1)
## Alternative call using the subset argument
fm2 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,
           subset = state == "treated")
summary(fm2)
require(graphics)

  xx <- seq(0, 5, len = 101)
  yy <- 5 * xx/(1+xx)
  par(mar = c(0, 0, 3.5, 0))
  plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),
       xlab = "", ylab = "", lwd = 2,
       main = "Parameters in the SSmicmen model")
  usr <- par("usr")
  arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
  arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
  text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
  text(-0.1, usr[4], "y", adj = c(1, 1))
  abline(h = 5, lty = 2, lwd = 0)
  arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
  arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
  text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
  segments(1, 0, 1, 2.7, lty = 2, lwd = 0.75)
  text(1, 2.7, expression(phi[2]), adj = c(0.5, 0))

Run the code above in your browser using DataLab