selfStart
model evaluates an alternative parametrization
of the asymptotic
regression function and the gradient with respect to those parameters.
It has an initial
attribute that creates initial estimates of the parameters
Asym
, lrc
, and c0
.SSasympOff(input, Asym, lrc, c0)
input
).input
for which the
response is zero.input
. It is the value of
the expression Asym*(1 - exp(-exp(lrc)*(input - c0)))
. If all of
the arguments Asym
, lrc
, and c0
are
names of objects, the gradient matrix with respect to these names is
attached as an attribute named gradient
.nls
, selfStart
;
example(SSasympOff)
gives graph showing the SSasympOff
parametrization, where Asymp
,
c0
.CO2.Qn1 <- CO2[CO2$Plant == "Qn1", ]
SSasympOff(CO2.Qn1$conc, 32, -4, 43) # response only
Asym <- 32; lrc <- -4; c0 <- 43
SSasympOff(CO2.Qn1$conc, Asym, lrc, c0) # response and gradient
getInitial(uptake ~ SSasympOff(conc, Asym, lrc, c0), data = CO2.Qn1)
## Initial values are in fact the converged values
fm1 <- nls(uptake ~ SSasympOff(conc, Asym, lrc, c0), data = CO2.Qn1)
summary(fm1)
Run the code above in your browser using DataLab