## Agresti (1990), pages 231--237, Penicillin and Rabbits
## Investigation of the effectiveness of immediately injected or 1.5
## hours delayed penicillin in protecting rabbits against a lethal
## injection with beta-hemolytic streptococci.
Rabbits <-
array(c(0, 0, 6, 5,
3, 0, 3, 6,
6, 2, 0, 4,
5, 6, 1, 0,
2, 5, 0, 0),
dim = c(2, 2, 5),
dimnames = list(
Delay = c("None", "1.5h"),
Response = c("Cured", "Died"),
Penicillin.Level = c("1/8", "1/4", "1/2", "1", "4")))
Rabbits
## Classical Mantel-Haenszel test
mantelhaen.test(Rabbits)
## => p = 0.047, some evidence for higher cure rate of immediate
## injection
## Exact conditional test
mantelhaen.test(Rabbits, exact = TRUE)
## => p - 0.040
## Exact conditional test for one-sided alternative of a higher
## cure rate for immediate injection
mantelhaen.test(Rabbits, exact = TRUE, alternative = "greater")
## => p = 0.020
## UC Berkeley Student Admissions
mantelhaen.test(UCBAdmissions)
## No evidence for association between admission and gender
## when adjusted for department. However,
apply(UCBAdmissions, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
## This suggests that the assumption of homogeneous (conditional)
## odds ratios may be violated. The traditional approach would be
## using the Woolf test for interaction:
woolf <- function(x) {
x <- x + 1 / 2
k <- dim(x)[3]
or <- apply(x, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
w <- apply(x, 3, function(x) 1 / sum(1 / x))
1 - pchisq(sum(w * (log(or) - weighted.mean(log(or), w)) ^ 2), k - 1)
}
woolf(UCBAdmissions)
## => p = 0.003, indicating that there is significant heterogeneity.
## (And hence the Mantel-Haenszel test cannot be used.)
## Agresti (2002), p. 287f and p. 297.
## Job Satisfaction example.
Satisfaction <-
as.table(array(c(1, 2, 0, 0, 3, 3, 1, 2,
11, 17, 8, 4, 2, 3, 5, 2,
1, 0, 0, 0, 1, 3, 0, 1,
2, 5, 7, 9, 1, 1, 3, 6),
dim = c(4, 4, 2),
dimnames =
list(Income =
c("<5000", "5000-15000",
"15000-25000", ">25000"),
"Job Satisfaction" =
c("V_D", "L_S", "M_S", "V_S"),
Gender = c("Female", "Male"))))
## (Satisfaction categories abbreviated for convenience.)
ftable(. ~ Gender + Income, Satisfaction)
## Table 7.8 in Agresti (2002), p. 288.
mantelhaen.test(Satisfaction)
## See Table 7.12 in Agresti (2002), p. 297.
Run the code above in your browser using DataLab