x <- 1:5
mod1 <- lm(c(1:3, 7, 6) ~ x)
S1 <- simulate(mod1, nsim = 4)
## repeat the simulation:
.Random.seed <- attr(S1, "seed")
identical(S1, simulate(mod1, nsim = 4))
S2 <- simulate(mod1, nsim = 200, seed = 101)
rowMeans(S2) # should be about the same as
fitted(mod1)
## repeat identically:
(sseed <- attr(S2, "seed")) # seed; RNGkind as attribute
stopifnot(identical(S2, simulate(mod1, nsim = 200, seed = sseed)))
## To be sure about the proper RNGkind, e.g., after
RNGversion("2.7.0")
## first set the RNG kind, then simulate
do.call(RNGkind, attr(sseed, "kind"))
identical(S2, simulate(mod1, nsim = 200, seed = sseed))
## Binomial GLM examples
yb1 <- matrix(c(4, 4, 5, 7, 8, 6, 6, 5, 3, 2), ncol = 2)
modb1 <- glm(yb1 ~ x, family = binomial)
S3 <- simulate(modb1, nsim = 4)
# each column of S3 is a two-column matrix.
x2 <- sort(runif(100))
yb2 <- rbinom(100, prob = plogis(2*(x2-1)), size = 1)
yb2 <- factor(1 + yb2, labels = c("failure", "success"))
modb2 <- glm(yb2 ~ x2, family = binomial)
S4 <- simulate(modb2, nsim = 4)
# each column of S4 is a factor
Run the code above in your browser using DataLab