
This selfStart
model evaluates the asymptotic regression
function and its gradient. It has an initial
attribute that
will evaluate initial estimates of the parameters Asym
, R0
,
and lrc
for a given set of data.
SSasymp(input, Asym, R0, lrc)
a numeric vector of values at which to evaluate the model.
a numeric parameter representing the horizontal asymptote on
the right side (very large values of input
).
a numeric parameter representing the response when
input
is zero.
a numeric parameter representing the natural logarithm of the rate constant.
a numeric vector of the same length as input
. It is the value of
the expression Asym+(R0-Asym)*exp(-exp(lrc)*input)
. If all of
the arguments Asym
, R0
, and lrc
are
names of objects, the gradient matrix with respect to these names is
attached as an attribute named gradient
.
# NOT RUN {
Lob.329 <- Loblolly[ Loblolly$Seed == "329", ]
SSasymp( Lob.329$age, 100, -8.5, -3.2 ) # response only
Asym <- 100
resp0 <- -8.5
lrc <- -3.2
SSasymp( Lob.329$age, Asym, resp0, lrc ) # response and gradient
getInitial(height ~ SSasymp( age, Asym, resp0, lrc), data = Lob.329)
## Initial values are in fact the converged values
fm1 <- nls(height ~ SSasymp( age, Asym, resp0, lrc), data = Lob.329)
summary(fm1)
# }
Run the code above in your browser using DataLab