Learn R Programming

stats (version 3.4.3)

deriv: Symbolic and Algorithmic Derivatives of Simple Expressions

Description

Compute derivatives of simple expressions, symbolically and algorithmically.

Usage

D (expr, name)
 deriv(expr, …)
deriv3(expr, …)

# S3 method for default deriv(expr, namevec, function.arg = NULL, tag = ".expr", hessian = FALSE, …) # S3 method for formula deriv(expr, namevec, function.arg = NULL, tag = ".expr", hessian = FALSE, …)

# S3 method for default deriv3(expr, namevec, function.arg = NULL, tag = ".expr", hessian = TRUE, …) # S3 method for formula deriv3(expr, namevec, function.arg = NULL, tag = ".expr", hessian = TRUE, …)

Arguments

expr

a expression or call or (except D) a formula with no lhs.

name,namevec

character vector, giving the variable names (only one for D()) with respect to which derivatives will be computed.

function.arg

if specified and non-NULL, a character vector of arguments for a function return, or a function (with empty body) or TRUE, the latter indicating that a function with argument names namevec should be used.

tag

character; the prefix to be used for the locally created variables in result.

hessian

a logical value indicating whether the second derivatives should be calculated and incorporated in the return value.

arguments to be passed to or from methods.

Value

D returns a call and therefore can easily be iterated for higher derivatives.

deriv and deriv3 normally return an expression object whose evaluation returns the function values with a "gradient" attribute containing the gradient matrix. If hessian is TRUE the evaluation also returns a "hessian" attribute containing the Hessian array.

If function.arg is not NULL, deriv and deriv3 return a function with those arguments rather than an expression.

Details

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is a generic function with a default and a formula method. It returns a call for computing the expr and its (partial) derivatives, simultaneously. It uses so-called algorithmic derivatives. If function.arg is a function, its arguments can have default values, see the fx example below.

Currently, deriv.formula just calls deriv.default after extracting the expression to the right of ~.

deriv3 and its methods are equivalent to deriv and its methods except that hessian defaults to TRUE for deriv3.

The internal code knows about the arithmetic operators +, -, *, / and ^, and the single-variable functions exp, log, sin, cos, tan, sinh, cosh, sqrt, pnorm, dnorm, asin, acos, atan, gamma, lgamma, digamma and trigamma, as well as psigamma for one or two arguments (but derivative only with respect to the first). (Note that only the standard normal distribution is considered.)

Since R 3.4.0, the single-variable functions log1p, expm1, log2, log10, cospi, sinpi, tanpi, factorial, and lfactorial are supported as well.

References

Griewank, A. and Corliss, G. F. (1991) Automatic Differentiation of Algorithms: Theory, Implementation, and Application. SIAM proceedings, Philadelphia.

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

nlm and optim for numeric minimization which could make use of derivatives,

Examples

Run this code
# NOT RUN {
## formula argument :
dx2x <- deriv(~ x^2, "x") ; dx2x
# }
# NOT RUN {
expression({
         .value <- x^2
         .grad <- array(0, c(length(.value), 1), list(NULL, c("x")))
         .grad[, "x"] <- 2 * x
         attr(.value, "gradient") <- .grad
         .value
})
# }
# NOT RUN {
mode(dx2x)
x <- -1:2
eval(dx2x)

## Something 'tougher':
trig.exp <- expression(sin(cos(x + y^2)))
( D.sc <- D(trig.exp, "x") )
all.equal(D(trig.exp[[1]], "x"), D.sc)

( dxy <- deriv(trig.exp, c("x", "y")) )
y <- 1
eval(dxy)
eval(D.sc)

## function returned:
deriv((y ~ sin(cos(x) * y)), c("x","y"), func = TRUE)

## function with defaulted arguments:
(fx <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),
             function(b0, b1, th, x = 1:7){} ) )
fx(2, 3, 4)

## First derivative

D(expression(x^2), "x")
stopifnot(D(as.name("x"), "x") == 1)

## Higher derivatives
deriv3(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),
     c("b0", "b1", "th", "x") )

## Higher derivatives:
DD <- function(expr, name, order = 1) {
   if(order < 1) stop("'order' must be >= 1")
   if(order == 1) D(expr, name)
   else DD(D(expr, name), name, order - 1)
}
DD(expression(sin(x^2)), "x", 3)
## showing the limits of the internal "simplify()" :
# }
# NOT RUN {
-sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) *
    2) * (2 * x) + sin(x^2) * (2 * x) * 2)
# }
# NOT RUN {
## New (R 3.4.0, 2017):
D(quote(log1p(x^2)), "x") ## log1p(x) = log(1 + x)
stopifnot(identical(
       D(quote(log1p(x^2)), "x"),
       D(quote(log(1+x^2)), "x")))
D(quote(expm1(x^2)), "x") ## expm1(x) = exp(x) - 1
stopifnot(identical(
       D(quote(expm1(x^2)), "x") -> Dex1,
       D(quote(exp(x^2)-1), "x")),
       identical(Dex1, quote(exp(x^2) * (2 * x))))

D(quote(sinpi(x^2)), "x") ## sinpi(x) = sin(pi*x)
D(quote(cospi(x^2)), "x") ## cospi(x) = cos(pi*x)
D(quote(tanpi(x^2)), "x") ## tanpi(x) = tan(pi*x)

stopifnot(identical(D(quote(log2 (x^2)), "x"),
                    quote(2 * x/(x^2 * log(2)))),
          identical(D(quote(log10(x^2)), "x"),
                    quote(2 * x/(x^2 * log(10)))))

# }

Run the code above in your browser using DataLab