# NOT RUN {
require(graphics)
## The variances of the variables in the
## USArrests data vary by orders of magnitude, so scaling is appropriate
(pc.cr <- princomp(USArrests)) # inappropriate
princomp(USArrests, cor = TRUE) # =^= prcomp(USArrests, scale=TRUE)
## Similar, but different:
## The standard deviations differ by a factor of sqrt(49/50)
summary(pc.cr <- princomp(USArrests, cor = TRUE))
loadings(pc.cr) # note that blank entries are small but not zero
## The signs of the columns are arbitrary
plot(pc.cr) # shows a screeplot.
biplot(pc.cr)
## Formula interface
princomp(~ ., data = USArrests, cor = TRUE)
## NA-handling
USArrests[1, 2] <- NA
pc.cr <- princomp(~ Murder + Assault + UrbanPop,
data = USArrests, na.action = na.exclude, cor = TRUE)
# }
# NOT RUN {
pc.cr$scores[1:5, ]
# }
# NOT RUN {
## (Simple) Robust PCA:
## Classical:
(pc.cl <- princomp(stackloss))
# }
# NOT RUN {
## Robust:
(pc.rob <- princomp(stackloss, covmat = MASS::cov.rob(stackloss)))
# }
Run the code above in your browser using DataLab