# NOT RUN {
## 'esoph' has the frequencies of cases and controls for all levels of
## the variables 'agegp', 'alcgp', and 'tobgp'.
xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)
## Output is not really helpful ... flat tables are better:
ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))
## In particular if we have fewer factors ...
ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))
## This is already a contingency table in array form.
DF <- as.data.frame(UCBAdmissions)
## Now 'DF' is a data frame with a grid of the factors and the counts
## in variable 'Freq'.
DF
## Nice for taking margins ...
xtabs(Freq ~ Gender + Admit, DF)
## And for testing independence ...
summary(xtabs(Freq ~ ., DF))
## with NA's
DN <- DF; DN[cbind(6:9, c(1:2,4,1))] <- NA; DN
tools::assertError(# 'na.fail' should fail :
xtabs(Freq ~ Gender + Admit, DN, na.action=na.fail))
xtabs(Freq ~ Gender + Admit, DN)
xtabs(Freq ~ Gender + Admit, DN, na.action = na.pass)
## The Female:Rejected combination has NA 'Freq' (and NA prints 'invisibly' as "")
xtabs(Freq ~ Gender + Admit, DN, addNA = TRUE) # ==> count NAs
## Create a nice display for the warp break data.
warpbreaks$replicate <- rep_len(1:9, 54)
ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))
### ---- Sparse Examples ----
# }
# NOT RUN {
if(require("Matrix")) withAutoprint({
## similar to "nlme"s 'ergoStool' :
d.ergo <- data.frame(Type = paste0("T", rep(1:4, 9*4)),
Subj = gl(9, 4, 36*4))
print(xtabs(~ Type + Subj, data = d.ergo)) # 4 replicates each
set.seed(15) # a subset of cases:
print(xtabs(~ Type + Subj, data = d.ergo[sample(36, 10), ], sparse = TRUE))
## Hypothetical two-level setup:
inner <- factor(sample(letters[1:25], 100, replace = TRUE))
inout <- factor(sample(LETTERS[1:5], 25, replace = TRUE))
fr <- data.frame(inner = inner, outer = inout[as.integer(inner)])
print(xtabs(~ inner + outer, fr, sparse = TRUE))
})
# }
# NOT RUN {
<!-- % only if Matrix is available -->
# }
Run the code above in your browser using DataLab