This selfStart
model evaluates the Gompertz growth model
and its gradient. It has an initial
attribute that
creates initial estimates of the parameters Asym
,
b2
, and b3
.
SSgompertz(x, Asym, b2, b3)
a numeric vector of values at which to evaluate the model.
a numeric parameter representing the asymptote.
a numeric parameter related to the value of the function at
x = 0
a numeric parameter related to the scale the x
axis.
a numeric vector of the same length as input
. It is the value of
the expression Asym*exp(-b2*b3^x)
. If all of
the arguments Asym
, b2
, and b3
are
names of objects the gradient matrix with respect to these names is attached as
an attribute named gradient
.
# NOT RUN {
DNase.1 <- subset(DNase, Run == 1)
SSgompertz(log(DNase.1$conc), 4.5, 2.3, 0.7) # response only
local({ Asym <- 4.5; b2 <- 2.3; b3 <- 0.7
SSgompertz(log(DNase.1$conc), Asym, b2, b3) # response _and_ gradient
})
print(getInitial(density ~ SSgompertz(log(conc), Asym, b2, b3),
data = DNase.1), digits = 5)
## Initial values are in fact the converged values
fm1 <- nls(density ~ SSgompertz(log(conc), Asym, b2, b3),
data = DNase.1)
summary(fm1)
plot(density ~ log(conc), DNase.1, # xlim = c(0, 21),
main = "SSgompertz() fit to DNase.1")
ux <- par("usr")[1:2]; x <- seq(ux[1], ux[2], length.out=250)
lines(x, do.call(SSgompertz, c(list(x=x), coef(fm1))), col = "red", lwd=2)
As <- coef(fm1)[["Asym"]]; abline(v = 0, h = 0, lty = 3)
axis(2, at= exp(-coef(fm1)[["b2"]]), quote(e^{-b[2]}), las=1, pos=0)
# }
Run the code above in your browser using DataLab