
Compute the isotonic (monotonely increasing nonparametric) least squares regression which is piecewise constant.
isoreg(x, y = NULL)
coordinate vectors of the regression points. Alternatively a single
plotting structure can be specified: see xy.coords
.
isoreg()
returns an object of class isoreg
which is
basically a list with components
original (constructed) abscissa values x
.
corresponding y values.
fitted values corresponding to ordered x values.
cumulative y values corresponding to ordered x values.
integer vector giving indices where the fitted curve jumps, i.e., where the convex minorant has kinks.
logical indicating if original x values were ordered increasingly already.
if(!isOrd)
: integer permutation order(x)
of
original x
.
the call
to isoreg()
used.
The algorithm determines the convex minorant cumsum(y)
) which is piecewise
linear and the result is as.stepfun()
returns a stepfun
object which can be more parsimonious.
Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972) Statistical inference under order restrictions; Wiley, London.
Robertson, T., Wright, F. T. and Dykstra, R. L. (1988) Order Restricted Statistical Inference; Wiley, New York.
the plotting method plot.isoreg
with more examples;
isoMDS()
from the MASS package internally
uses isotonic regression.
# NOT RUN {
require(graphics)
(ir <- isoreg(c(1,0,4,3,3,5,4,2,0)))
plot(ir, plot.type = "row")
(ir3 <- isoreg(y3 <- c(1,0,4,3,3,5,4,2, 3))) # last "3", not "0"
(fi3 <- as.stepfun(ir3))
(ir4 <- isoreg(1:10, y4 <- c(5, 9, 1:2, 5:8, 3, 8)))
cat(sprintf("R^2 = %.2f\n",
1 - sum(residuals(ir4)^2) / ((10-1)*var(y4))))
## If you are interested in the knots alone :
with(ir4, cbind(iKnots, yf[iKnots]))
## Example of unordered x[] with ties:
x <- sample((0:30)/8)
y <- exp(x)
x. <- round(x) # ties!
plot(m <- isoreg(x., y))
stopifnot(all.equal(with(m, yf[iKnots]),
as.vector(tapply(y, x., mean))))
# }
Run the code above in your browser using DataLab