# NOT RUN {
require(graphics)
DNase1 <- subset(DNase, Run == 1)
## using a selfStart model
fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)
summary(fm1DNase1)
## the coefficients only:
coef(fm1DNase1)
## including their SE, etc:
coef(summary(fm1DNase1))
## using conditional linearity
fm2DNase1 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)),
data = DNase1,
start = list(xmid = 0, scal = 1),
algorithm = "plinear")
summary(fm2DNase1)
## without conditional linearity
fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1))
summary(fm3DNase1)
## using Port's nl2sol algorithm
fm4DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1),
algorithm = "port")
summary(fm4DNase1)
## weighted nonlinear regression
Treated <- Puromycin[Puromycin$state == "treated", ]
weighted.MM <- function(resp, conc, Vm, K)
{
## Purpose: exactly as white book p. 451 -- RHS for nls()
## Weighted version of Michaelis-Menten model
## ----------------------------------------------------------
## Arguments: 'y', 'x' and the two parameters (see book)
## ----------------------------------------------------------
## Author: Martin Maechler, Date: 23 Mar 2001
pred <- (Vm * conc)/(K + conc)
(resp - pred) / sqrt(pred)
}
Pur.wt <- nls( ~ weighted.MM(rate, conc, Vm, K), data = Treated,
start = list(Vm = 200, K = 0.1))
summary(Pur.wt)
## Passing arguments using a list that can not be coerced to a data.frame
lisTreat <- with(Treated,
list(conc1 = conc[1], conc.1 = conc[-1], rate = rate))
weighted.MM1 <- function(resp, conc1, conc.1, Vm, K)
{
conc <- c(conc1, conc.1)
pred <- (Vm * conc)/(K + conc)
(resp - pred) / sqrt(pred)
}
Pur.wt1 <- nls( ~ weighted.MM1(rate, conc1, conc.1, Vm, K),
data = lisTreat, start = list(Vm = 200, K = 0.1))
stopifnot(all.equal(coef(Pur.wt), coef(Pur.wt1)))
## Chambers and Hastie (1992) Statistical Models in S (p. 537):
## If the value of the right side [of formula] has an attribute called
## 'gradient' this should be a matrix with the number of rows equal
## to the length of the response and one column for each parameter.
weighted.MM.grad <- function(resp, conc1, conc.1, Vm, K)
{
conc <- c(conc1, conc.1)
K.conc <- K+conc
dy.dV <- conc/K.conc
dy.dK <- -Vm*dy.dV/K.conc
pred <- Vm*dy.dV
pred.5 <- sqrt(pred)
dev <- (resp - pred) / pred.5
Ddev <- -0.5*(resp+pred)/(pred.5*pred)
attr(dev, "gradient") <- Ddev * cbind(Vm = dy.dV, K = dy.dK)
dev
}
Pur.wt.grad <- nls( ~ weighted.MM.grad(rate, conc1, conc.1, Vm, K),
data = lisTreat, start = list(Vm = 200, K = 0.1))
rbind(coef(Pur.wt), coef(Pur.wt1), coef(Pur.wt.grad))
## In this example, there seems no advantage to providing the gradient.
## In other cases, there might be.
## The two examples below show that you can fit a model to
## artificial data with noise but not to artificial data
## without noise.
x <- 1:10
y <- 2*x + 3 # perfect fit
yeps <- y + rnorm(length(y), sd = 0.01) # added noise
nls(yeps ~ a + b*x, start = list(a = 0.12345, b = 0.54321))
## terminates in an error, because convergence cannot be confirmed:
try(nls(y ~ a + b*x, start = list(a = 0.12345, b = 0.54321)))
## the nls() internal cheap guess for starting values can be sufficient:
x <- -(1:100)/10
y <- 100 + 10 * exp(x / 2) + rnorm(x)/10
nlmod <- nls(y ~ Const + A * exp(B * x))
plot(x,y, main = "nls(*), data, true function and fit, n=100")
curve(100 + 10 * exp(x / 2), col = 4, add = TRUE)
lines(x, predict(nlmod), col = 2)
# }
# NOT RUN {
## The muscle dataset in MASS is from an experiment on muscle
## contraction on 21 animals. The observed variables are Strip
## (identifier of muscle), Conc (Cacl concentration) and Length
## (resulting length of muscle section).
utils::data(muscle, package = "MASS")
## The non linear model considered is
## Length = alpha + beta*exp(-Conc/theta) + error
## where theta is constant but alpha and beta may vary with Strip.
with(muscle, table(Strip)) # 2, 3 or 4 obs per strip
## We first use the plinear algorithm to fit an overall model,
## ignoring that alpha and beta might vary with Strip.
musc.1 <- nls(Length ~ cbind(1, exp(-Conc/th)), muscle,
start = list(th = 1), algorithm = "plinear")
summary(musc.1)
## Then we use nls' indexing feature for parameters in non-linear
## models to use the conventional algorithm to fit a model in which
## alpha and beta vary with Strip. The starting values are provided
## by the previously fitted model.
## Note that with indexed parameters, the starting values must be
## given in a list (with names):
b <- coef(musc.1)
musc.2 <- nls(Length ~ a[Strip] + b[Strip]*exp(-Conc/th), muscle,
start = list(a = rep(b[2], 21), b = rep(b[3], 21), th = b[1]))
summary(musc.2)
# }
Run the code above in your browser using DataLab