A \(k\)-form \(\omega\in\Lambda^k(V)\) maps
\(V^k\) to the reals, where \(V=\mathbb{R}^n\).
Function dovs()
returns \(n\), the dimensionality of the
underlying vector space. The function itself is almost trivial,
returning the maximum of the index matrix.
Special dispensation is given for zero-forms and zero tensors, which
return zero.
Vignette dovs
provides more discussion.