## Some k-tensors:
U1 <- as.ktensor(matrix(1:15,5,3))
U2 <- as.ktensor(cbind(1:3,2:4),1:3)
## Coerce a tensor to functional form, here mapping V^3 -> R (here V=R^15):
as.function(U1)(matrix(rnorm(45),15,3))
## Tensor product is tensorprod() or %X%:
U1 %X% U2
## A k-form is an alternating k-tensor:
K1 <- as.kform(cbind(1:5,2:6),rnorm(5))
K2 <- kform_general(3:6,2,1:6)
K3 <- rform(9,3,9,runif(9))
## The distributive law is true
(K1 + K2) ^ K3 == K1 ^ K3 + K2 ^ K3 # TRUE to numerical precision
## Wedge product is associative (non-trivial):
(K1 ^ K2) ^ K3
K1 ^ (K2 ^ K3)
## k-forms can be coerced to a function and wedge product:
f <- as.function(K1 ^ K2 ^ K3)
## E is a a random point in V^k:
E <- matrix(rnorm(63),9,7)
## f() is alternating:
f(E)
f(E[,7:1])
## The package blurs the distinction between symbolic and numeric computing:
dx <- as.kform(1)
dy <- as.kform(2)
dz <- as.kform(3)
dx ^ dy ^ dz
K3 ^ dx ^ dy ^ dz
Run the code above in your browser using DataLab