Given a \(k\)-tensor \(T\), we have
$$\mathrm{Alt}(T)\left(v_1,\ldots,v_k\right)=
\frac{1}{k!}\sum_{\sigma\in S_k}\mathrm{sgn}(\sigma)\cdot
T\left(v_{\sigma(1)},\ldots,v_{\sigma(k)}\right)
$$
Thus for example if \(k=3\):
$$\mathrm{Alt}(T)\left(v_1,v_2,v_3\right)=
\frac{1}{6}\left(\begin{array}{c}
+T\left(v_1,v_2,v_3\right)\quad
-T\left(v_1,v_3,v_2\right)\cr
-T\left(v_2,v_1,v_3\right)\quad
+T\left(v_2,v_3,v_1\right)\cr
+T\left(v_3,v_1,v_2\right)\quad
-T\left(v_3,v_2,v_1\right)
\end{array}
\right)
$$
and it is reasonably easy to see that \(\mathrm{Alt}(T)\)
is alternating, in the sense that
$$\mathrm{Alt}(T)\left(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k\right)=
-\mathrm{Alt}(T)\left(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k\right)
$$
Function Alt()
is intended to take and return an object of
class ktensor
; but if given a kform
object, it just
returns its argument unchanged.
A short vignette is provided with the package: type
vignette("Alt")
at the commandline.