DSOutlier()
#' @examples
set.seed(1000)
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.1, noise_separation = 5)
outlier_detector <- DSOutlier_DBSTREAM(r = .05, outlier_multiplier = 2)
update(outlier_detector, stream, 500)
outlier_detector
points <- get_points(stream, 20)
points
# Outliers are predicted as class NA
predict(outlier_detector, points)
# Plot new points from the stream. Predicted outliers are marked with a red x.
plot(outlier_detector, stream)
evaluate_static(outlier_detector, stream, measure =
c("noiseActual", "noisePredicted", "noisePrecision", "outlierJaccard"))
# use a different detector
outlier_detector2 <- DSOutlier_DStream(gridsize = .05, Cl = 0.5, outlier_multiplier = 2)
update(outlier_detector2, stream, 500)
plot(outlier_detector2, stream)
evaluate_static(outlier_detector2, stream, measure =
c("noiseActual", "noisePredicted", "noisePrecision", "outlierJaccard"))
Run the code above in your browser using DataLab