Learn R Programming

streamMOA (version 1.3-0)

DSC_CluStream: CluStream Data Stream Clusterer

Description

Class implements the CluStream cluster algorithm for data streams (Aggarwal et al, 2003).

Usage

DSC_CluStream(m = 100, horizon = 1000, t = 2, k = 5)

Value

An object of class DSC_CluStream (subclass of DSC_Micro, DSC_MOA and DSC).

Arguments

m

Defines the maximum number of micro-clusters used in CluStream

horizon

Defines the time window to be used in CluStream

t

Maximal boundary factor (i.e., the kernel radius factor). When deciding to add a new data point to a micro-cluster, the maximum boundary is defined as a factor of t of the RMS deviation of the data points in the micro-cluster from the centroid.

k

Number of macro-clusters to produce using weighted k-means.

Author

Michael Hahsler and John Forrest

Details

This is an interface to the MOA implementation of CluStream.

If k is specified, then CluStream applies a weighted k-means algorithm for reclustering (see Examples section below).

References

Aggarwal CC, Han J, Wang J, Yu PS (2003). "A Framework for Clustering Evolving Data Streams." In "Proceedings of the International Conference on Very Large Data Bases (VLDB '03)," pp. 81-92.

Bifet A, Holmes G, Pfahringer B, Kranen P, Kremer H, Jansen T, Seidl T (2010). MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering. In Journal of Machine Learning Research (JMLR).

See Also

Other DSC_MOA: DSC_BICO_MOA(), DSC_ClusTree(), DSC_DStream_MOA(), DSC_DenStream(), DSC_MCOD(), DSC_MOA(), DSC_StreamKM()

Examples

Run this code
# data with 3 clusters and 5% noise
set.seed(1000)
stream <- DSD_Gaussians(k = 3, d = 2, noise = .05)

# cluster with CluStream
clustream <- DSC_CluStream(m = 50, horizon = 100, k = 3)
update(clustream, stream, 500)
clustream

plot(clustream, stream, type = "both")

Run the code above in your browser using DataLab