Learn R Programming

strucchange (version 1.5-3)

Grossarl: Marriages, Births and Deaths in Grossarl

Description

Data about the number of marriages, illegitimate and legitimate births, and deaths in the Austrian Alpine village Grossarl during the 18th and 19th century.

Usage

data("Grossarl")

Arguments

Format

Grossarl is a data frame containing 6 annual time series (1700 - 1899), 3 factors coding policy interventions and 1 vector with the year (plain numeric).

marriages

time series. Number of marriages,

illegitimate

time series. Number of illegitimate births,

legitimate

time series. Number of legitimate births,

legitimate

time series. Number of deaths,

fraction

time series. Fraction of illegitimate births,

lag.marriages

time series. Number of marriages in the previous year,

politics

ordered factor coding 4 different political regimes,

morals

ordered factor coding 5 different moral regulations,

nuptiality

ordered factor coding 5 different marriage restrictions,

year

numeric. Year of observation.

Details

The data frame contains historical demographic data from Grossarl, a village in the Alpine region of Salzburg, Austria, during the 18th and 19th century. During this period, the total population of Grossarl did not vary much on the whole, with the very exception of the period of the protestant emigrations in 1731/32.

Especially during the archbishopric, moral interventions aimed at lowering the proportion of illegitimate baptisms. For details see the references.

References

Veichtlbauer O., Zeileis A., Leisch F. (2006), The Impact Of Policy Interventions on a Pre-Industrial Population System in the Austrian Alps, forthcoming.

Zeileis A., Veichtlbauer O. (2002), Policy Interventions Affecting Illegitimacy in Preindustrial Austria: A Structural Change Analysis, In R. Dutter (ed.), Festschrift 50 Jahre Österreichische Statistische Gesellschaft, 133-146, Österreichische Statistische Gesellschaft.

Examples

Run this code
data("Grossarl")

## time series of births, deaths, marriages
###########################################

with(Grossarl, plot(cbind(deaths, illegitimate + legitimate, marriages),
  plot.type = "single", col = grey(c(0.7, 0, 0)), lty = c(1, 1, 3),
  lwd = 1.5, ylab = "annual Grossarl series"))
legend("topright", c("deaths", "births", "marriages"), col = grey(c(0.7, 0, 0)),
  lty = c(1, 1, 3), bty = "n")

## illegitimate births
######################
## lm + MOSUM
plot(Grossarl$fraction)
fm.min <- lm(fraction ~ politics, data = Grossarl)
fm.ext <- lm(fraction ~ politics + morals + nuptiality + marriages,
  data = Grossarl)
lines(ts(fitted(fm.min), start = 1700), col = 2)
lines(ts(fitted(fm.ext), start = 1700), col = 4)
mos.min <- efp(fraction ~ politics, data = Grossarl, type = "OLS-MOSUM")
mos.ext <- efp(fraction ~ politics + morals + nuptiality + marriages,
  data = Grossarl, type = "OLS-MOSUM")
plot(mos.min)
lines(mos.ext, lty = 2)

## dating
bp <- breakpoints(fraction ~ 1, data = Grossarl, h = 0.1)
summary(bp)
## RSS, BIC, AIC
plot(bp)
plot(0:8, AIC(bp), type = "b")

## probably use 5 or 6 breakpoints and compare with
## coding of the factors as used by us
##
## politics                   1803      1816 1850
## morals      1736 1753 1771 1803
## nuptiality                 1803 1810 1816      1883
##
## m = 5            1753 1785           1821 1856 1878
## m = 6       1734 1754 1785           1821 1856 1878
##              6    2    5              1    4    3

## fitted models
coef(bp, breaks = 6)
plot(Grossarl$fraction)
lines(fitted(bp, breaks = 6), col = 2)
lines(ts(fitted(fm.ext), start = 1700), col = 4)


## marriages
############
## lm + MOSUM
plot(Grossarl$marriages)
fm.min <- lm(marriages ~ politics, data = Grossarl)
fm.ext <- lm(marriages ~ politics + morals + nuptiality, data = Grossarl)
lines(ts(fitted(fm.min), start = 1700), col = 2)
lines(ts(fitted(fm.ext), start = 1700), col = 4)
mos.min <- efp(marriages ~ politics, data = Grossarl, type = "OLS-MOSUM")
mos.ext <- efp(marriages ~ politics + morals + nuptiality, data = Grossarl,
  type = "OLS-MOSUM")
plot(mos.min)
lines(mos.ext, lty = 2)

## dating
bp <- breakpoints(marriages ~ 1, data = Grossarl, h = 0.1)
summary(bp)
## RSS, BIC, AIC
plot(bp)
plot(0:8, AIC(bp), type = "b")

## probably use 3 or 4 breakpoints and compare with
## coding of the factors as used by us
##
## politics                   1803      1816 1850
## morals      1736 1753 1771 1803
## nuptiality                 1803 1810 1816      1883
##
## m = 3       1738                     1813      1875
## m = 4       1738      1794           1814      1875
##              2         4              1         3

## fitted models
coef(bp, breaks = 4)
plot(Grossarl$marriages)
lines(fitted(bp, breaks = 4), col = 2)
lines(ts(fitted(fm.ext), start = 1700), col = 4)

Run the code above in your browser using DataLab