As an alternative to use_custom_lang
, this function allows
temporarily modifying the pre-defined terms in the outputs.
define_keywords(..., ask = FALSE, file = NA)
One or more pairs of keywords and their new values see Details for the complete list of existing keywords.
Logical. When `TRUE` (default), a dialog box comes up to ask whether to save the edited values in a csv file for later use.
Character. Path and name of custom language file to be saved.
This comma delimited file can be reused by calling
use_custom_lang
.
On systems with GUI capabilities, a window will pop-up when calling
define_keywords()
without any parameters, allowing the modification
of the custom column. The changes will be active as long as the
package is loaded. When the edit window is closed, a dialog will pop up,
prompting the user to save the modified set of keywords in a custom csv
language file that can later be used with use_custom_lang
.
Here is the full list of modifiable keywords.
main heading for freq()
main heading for freq()
(weighted)
main heading for ctable()
main heading ctable()
(weighted)
indicates what proportions are displayed
indicates what proportions are displayed
indicates what proportions are displayed
main heading for descr()
main heading for descr()
(weighted)
main heading for dfSummary()
heading item used in descr()
heading item used in dfSummary()
heading item used in dfSummary()
heading item (all functions)
heading item (all functions) & column name in dfSummary()
heading item (all functions) & column name in dfSummary()
heading item (all functions when used with stby()
heading item for descr()
when used with stby()
heading item - descr()
& freq()
heading item for freq()
heading item - type in freq()
heading item - type in freq()
heading item - type in freq()
heading item - type in freq()
heading item - type in freq()
heading item - type in freq()
heading item - type in freq()
column name in freq()
column name in freq()
when report.nas=FALSE
column name in freq()
column name in freq()
column name in freq()
column name in freq()
column name in freq()
column name in freq()
and dfSummary()
& column content in dfSummary()
column content in dfSummary()
(emails)
column grouping in freq()
, html version
row name in descr()
row name in descr()
cell content (dfSummary)
row name in descr()
row name in descr()
- 1st quartile
row name in descr()
row name in descr()
- 3rd quartile
row name in descr()
row name in descr()
- Median Absolute Deviation
row name in descr()
- Inter-Quartile Range
row name in descr()
- Coefficient of Variation
row name in descr()
row name in descr()
- Std. Error for Skewness
row name in descr()
row name in descr()
- Count of non-missing values
row name in descr()
- pct. of non-missing values
column name in dfSummary()
- position of column in the data frame
column name in dfSummary()
column name in dfSummary()
column name in dfSummary()
column name in dfSummary()
cell content in dfSummary()
- singular form
cell content in dfSummary()
- plural form
cell content in dfSummary()
- column has only NAs
cell content in dfSummary()
- column has only empty strings
cell content in dfSummary()
- col. has only NAs and empty strings
cell content in dfSummary()
- factor has no levels defined
cell content in dfSummary()
cell content in dfSummary()
- note appearing in Stats/Values
cell content in dfSummary()
- nbr of values not displayed
cell content in dfSummary()
- When UPC codes are detected
cell content in dfSummary()
- mode = most frequent value
cell content in dfSummary()
- median (shortened term)
cell content in dfSummary()
- earliest date for date-type cols
cell content in dfSummary()
- latest date for data-type cols
cell content in dfSummary()
footnote content
footnote content
footnote - date format (see strptime
)
# NOT RUN {
define_keywords(n = "Nb. Obs.")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab