Learn R Programming

sunburstR (version 2.1.5)

sunburst: `d3.js` Sequence Sunburst Diagrams

Description

Sequences sunburst diagrams provide an interactive method of exploring sequence data, such as website navigation paths.

Usage

sunburst(
  data = NULL,
  legendOrder = NULL,
  colors = NULL,
  valueField = "size",
  percent = TRUE,
  count = FALSE,
  explanation = NULL,
  breadcrumb = list(),
  legend = list(),
  sortFunction = NULL,
  sumNodes = TRUE,
  withD3 = FALSE,
  width = NULL,
  height = NULL,
  elementId = NULL,
  sizingPolicy = NULL,
  csvdata = NULL,
  jsondata = NULL
)

Arguments

data

data in csv source,target form or in nested d3 JSON hierarchy with `name:..., children:[];`. csvdata and jsondata arguments are now deprecated in favor of this single data argument. list, character, or connection data will be assumed to be JSON. data.frame data will be assumed to be csvdata and converted to JSON by sunburstR:::csv_to_hier().

legendOrder

string vector if you would like to manually order the legend. If legendOrder is not provided, then the legend will be in the descending order of the top level hierarchy.

colors

vector of strings representing colors as hexadecimal for manual colors. If you want precise control of colors, supply a list with range and/or domain. For advanced customization, supply a JavaScript function.

valueField

character for the field to use to calculate size. The default value is "size".

percent

logical to include percentage of total in the explanation.

count

logical to include count and total in the explanation.

explanation

JavaScript function to define a custom explanation for the center of the sunburst. Note, this will override percent and count.

breadcrumb

list to customize the breadcrumb trail. This argument should be in the form list(w =, h =, s =, t = ) where w is the width, h is the height, s is the spacing, and t is the tail all in px. w is 0 by default for breadcrumbs widths based on text length.

legend

list to customize the legend or logical to disable the legend. The list argument should be in the form list(w =, h =, r =, s = ) where w is the width, h is the height, s is the spacing, and r is the radius all in px.

sortFunction

JS function to sort the slices. The default sort is by size.

sumNodes

logical to sum non-leaf nodes. The default sumNodes = TRUE assumes that the user has not already calculated a sum.

withD3

logical to include d3 dependency from d3r. As of version 1.0, sunburst uses a standalone JavaScript build and will not include the entire d3 in the global/window namespace. To include d3.js in this way, use withD3=TRUE.

height, width

height and width of sunburst htmlwidget containing div specified in any valid CSS size unit.

elementId

string id as a valid CSS element id.

sizingPolicy
csvdata

deprecated use data argument instead; data in csv source,target form

jsondata

deprecated use data argument instead; data in nested d3 JSON hierarchy with `name:..., children:[];`

Examples

Run this code
# NOT RUN {
library(sunburstR)

# read in sample visit-sequences.csv data provided in source
# only use first 100 rows to speed package build and check
#   https://gist.github.com/kerryrodden/7090426#file-visit-sequences-csv
sequences <- read.csv(
  system.file("examples/visit-sequences.csv",package="sunburstR")
  ,header = FALSE
  ,stringsAsFactors = FALSE
)[1:100,]

sunburst(sequences)

# }
# NOT RUN {
# explore some of the arguments
sunburst(
  sequences
  ,count = TRUE
)

sunburst(
  sequences
  # apply sort order to the legends
  ,legendOrder = unique(unlist(strsplit(sequences[,1],"-")))
  # just provide the name in the explanation in the center
  ,explanation = "function(d){return d.data.name}"
)


# try with json data
sequence_json <- jsonlite::fromJSON(
  system.file("examples/visit-sequences.json",package="sunburstR"),
  simplifyDataFrame = FALSE
)
sunburst(sequence_json)



# try with csv data from this fork
#  https://gist.github.com/mkajava/7515402
# great use for new breadbrumb wrapping
sunburst(
  csvdata = read.csv(
    file = paste0(
      "https://gist.githubusercontent.com/mkajava/",
      "7515402/raw/9f80d28094dc9dfed7090f8fb3376ef1539f4fd2/",
      "comment-sequences.csv"
    )
    ,header = TRUE
    ,stringsAsFactors = FALSE
  )
)


# try with csv data from this fork
#  https://gist.github.com/rileycrane/92a2c36eb932b4f99e51/
sunburst( csvdata = read.csv(
  file = paste0(
    "https://gist.githubusercontent.com/rileycrane/",
    "92a2c36eb932b4f99e51/raw/",
    "a0212b4ca8043af47ec82369aa5f023530279aa3/visit-sequences.csv"
  )
  ,header=FALSE
  ,stringsAsFactors = FALSE
))
# }
# NOT RUN {
#  use sunburst to analyze ngram data from Peter Norvig
#    http://norvig.com/mayzner.html

library(sunburstR)
library(pipeR)

#  read the csv data downloaded from the Google Fusion Table linked in the article
ngrams2 <- read.csv(
  system.file(
    "examples/ngrams2.csv"
    ,package="sunburstR"
  )
  , stringsAsFactors = FALSE
)

ngrams2 %>>%
  #  let's look at ngrams at the start of a word, so columns 1 and 3
  (.[,c(1,3)]) %>>%
  #  split the ngrams into a sequence by splitting each letter and adding -
  (
    data.frame(
      sequence = strsplit(.[,1],"") %>>%
        lapply( function(ng){ paste0(ng,collapse = "-") } ) %>>%
        unlist
      ,freq = .[,2]
      ,stringsAsFactors = FALSE
    )
  ) %>>%
  sunburst


library(htmltools)

ngrams2 %>>%
  (
    lapply(
      seq.int(3,ncol(.))
      ,function(letpos){
        (.[,c(1,letpos)]) %>>%
          #  split the ngrams into a sequence by splitting each letter and adding -
          (
            data.frame(
              sequence = strsplit(.[,1],"") %>>%
                lapply( function(ng){ paste0(ng,collapse = "-") } ) %>>%
                unlist
              ,freq = .[,2]
              ,stringsAsFactors = FALSE
            )
          ) %>>%
          ( tags$div(style="float:left;",sunburst( ., height = 300, width = 300 )) )
      }
    )
  ) %>>%
  tagList %>>%
  browsable
# }
# NOT RUN {
  library(treemap)
  library(sunburstR)
  library(d3r)

  # use example from ?treemap::treemap
  data(GNI2014)
  tm <- treemap(GNI2014,
          index=c("continent", "iso3"),
          vSize="population",
          vColor="continent",
          type="index")

  tm_nest <- d3_nest(
    tm$tm[,c("continent", "iso3", "vSize", "color")],
    value_cols = c("vSize", "color")
  )

  sunburst(
    data = tm_nest,
    valueField = "vSize",
    count = TRUE,
    # to avoid double counting with pre-summed trees
    # use sumNodes = FALSE
    sumNodes = FALSE,
    colors = htmlwidgets::JS("function(d){return d3.select(this).datum().data.color;}"),
    withD3 = TRUE
  )
# }
# NOT RUN {
# calendar sunburst example

library(sunburstR)

df <- data.frame(
  date = seq.Date(
    as.Date('2014-01-01'),
    as.Date('2016-12-31'),
    by = "days"
  ),
  stringsAsFactors = FALSE
)

df$year = format(df$date, "%Y")
df$quarter = paste0("Q", ceiling(as.numeric(format(df$date,"%m"))/3))
df$month = format(df$date, "%b")
df$path = paste(df$year, df$quarter, df$month, sep="-")
df$count = rep(1, nrow(df))

sunburst(
  data.frame(xtabs(count~path,df)),
  # added a degree of difficulty by providing
  #  not easily sortable names
  sortFunction = htmlwidgets::JS(
"
function(a,b){
  abb = {
    2014:-7,
    2015:-6,
    2016:-5,
    Q1:-4,
    Q2:-3,
    Q3:-2,
    Q4:-1,
    Jan:1,
    Feb:2,
    Mar:3,
    Apr:4,
    May:5,
    Jun:6,
    Jul:7,
    Aug:8,
    Sep:9,
    Oct:10,
    Nov:11,
    Dec:12
  }
  return abb[a.data.name] - abb[b.data.name];
}
"
  )
)
# sorting example: place data in order of occurence

library(sunburstR)

df <- data.frame(
  group = c("foo", "bar", "xyz"),
  value = c(1, 3, 2)
)

sunburst(df,
         # create a trivial sort function
         sortFunction = htmlwidgets::JS('function(x) {return x;}'))

new_order <- c(3,2,1)
sunburst(df[new_order,],
         sortFunction = htmlwidgets::JS('function(x) {return x;}'))

# }

Run the code above in your browser using DataLab