- params
for detailed explanation on parameters,
refer to original documentation https://cran.r-project.org/package=liquidSVM
- type
type of model to train, possible values: "bc" = binary classification, "mc" = multiclassification,
"ls" = least square regression, "qt" = quantile regression
- scale
normalises the feature between 0 and 1, default = TRUE
- gammas
bandwidth of the kernel, default value is chosen from a list of gamma values generated internally
- lambdas
regularization parameter
- c_values
cost parameter
- predict.prob
If TRUE then final prediction is probability else labels. This also restricts the choices of mc_type to c("OvA_ls","AvA_ls").
- verbose
display the progress to standard output, possible values are 0, 1
- ncores
number of cores to use for parallel processing, possible values are 0 (default), -1
- partition_choice
optimization parameter to train on large data sets, possible value are: 0 (disables partitioning) , 6 (high speed), 5 (best error)
- seed
random seed, default = -1
- grid_choice
internal grid used for convenient hyperparameter tuning of gammas, lambdas, possible values are: 0,1,2,-1,-2
- useCells
activates batch processing, set it to TRUE in case of out of memory errors
- mc_type
configure multiclassification variant like OnevsAll, AllvsAll, possible values are: "AvA_hinge", "OvA_ls", "OvA_hinge", "AvA_ls"
- quantile
do quantile regression, default=FALSE
- weights
weights to be used in quantile regression, default is c(0.05, 0.1, 0.5, 0.9, 0.95)