Method new()
Usage
NBTrainer$new(prior, laplace, usekernel)
Arguments
prior
numeric, prior numeric vector with prior probabilities. vector with prior probabilities of the classes.
If unspecified, the class proportions for the training set are used.
If present, the probabilities should be specified in the order of the factor levels.
laplace
nuemric, value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)
usekernel
logical, if TRUE, density is used to estimate the densities of metric predictors
Details
Create a new `NBTrainer` object.
Returns
A `NBTrainer` object.
Examples
data(iris)
nb <- NBTrainer$new()
Method fit()
Usage
NBTrainer$fit(X, y)
Arguments
X
data.frame containing train features
y
character, name of target variable
Details
Fits the naive bayes model
Returns
NULL, trains and saves the model in memory
Examples
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
Usage
NBTrainer$predict(X, type = "class")
Arguments
X
data.frame containing test features
type
character, if the predictions should be labels or probability
Details
Returns predictions from the model
Returns
NULL, trains and saves the model in memory
Examples
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
y <- nb$predict(iris)
Method clone()
The objects of this class are cloneable with this method.
Usage
NBTrainer$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.