# NOT RUN {
## Support points on standard distributions
# }
# NOT RUN {
#############################################################
# Generate 50 SPs for the 2-d i.i.d. N(0,1) distribution
#############################################################
ncur <- 50
cur.sp <- sp(ncur,2,dist.str=rep("normal",2))$sp
#Add 50 sequential SPs
nseq <- 50
seq.sp <- sp_seq(cur.sp,nseq,dist.str=rep("normal",2))$seq
x1 <- seq(-3.5,3.5,length.out=100) #Plot contours
x2 <- seq(-3.5,3.5,length.out=100)
z <- exp(-outer(x1^2,x2^2,FUN="+")/2)
contour.default(x=x1,y=x2,z=z,drawlabels=FALSE,nlevels=10)
points(cur.sp,pch=4,cex=1.25,col="black",lwd=2) # (current in black)
points(seq.sp,pch=16,cex=1.25,col="red") # (new SPs in red)
#############################################################
# Support points for big data reduction: Franke distribution
#############################################################
\dontrun{
library(MHadaptive)
#Use modified Franke's function as posterior
franke2d <- function(xx){
if ((xx[1]>1)||(xx[1]<0)||(xx[2]>1)||(xx[2]<0)){
return(-Inf)
}
else{
x1 <- xx[1]
x2 <- xx[2]
term1 <- 0.75 * exp(-(9*x1-2)^2/4 - (9*x2-2)^2/4)
term2 <- 0.75 * exp(-(9*x1+1)^2/49 - (9*x2+1)/10)
term3 <- 0.5 * exp(-(9*x1-7)^2/4 - (9*x2-3)^2/4)
term4 <- -0.2 * exp(-(9*x1-4)^2 - (9*x2-7)^2)
y <- term1 + term2 + term3 + term4
return(2*log(y))
}
}
#Generate MCMC samples
li_func <- franke2d #Desired log-posterior
ini <- c(0.5,0.5) #Initial point for MCMc
NN <- 1e5 #Number of MCMC samples desired
burnin <- NN/2 #Number of burn-in runs
mcmc_r <- Metro_Hastings(li_func, pars=ini, prop_sigma=0.05*diag(2),
iterations=NN, burn_in=burnin)
#Generate ncur SPs
ncur <- 50
cur.sp <- sp(ncur,2,dist.samp=mcmc_r$trace)$sp
#Add nseq sequential SPs
nseq <- 50
seq.sp <- sp_seq(cur.sp,nseq,dist.samp=mcmc_r$trace)$seq
#Plot SPs
par(mfrow=c(1,2))
x1 <- seq(0,1,length.out=100) #contours
x2 <- seq(0,1,length.out=100)
z <- matrix(NA,nrow=100,ncol=100)
for (i in 1:100){
for (j in 1:100){
z[i,j] <- franke2d(c(x1[i],x2[j]))
}
}
plot(mcmc_r$trace,pch=4,col="gray",cex=0.75,
xlab="",ylab="",xlim=c(0,1),ylim=c(0,1)) #big data
points(cur.sp,pch=4,cex=1.25,col="black",lwd=2) # (current in black)
points(seq.sp,pch=16,cex=1.25,col="red") # (new SPs in red)
contour.default(x=x1,y=x2,z=z,
drawlabels=TRUE,nlevels=10) #contour
points(cur.sp,pch=4,cex=1.25,col="black",lwd=2) # (current in black)
points(seq.sp,pch=16,cex=1.25,col="red") # (new SPs in red)
}
# }
Run the code above in your browser using DataLab