data("measlesWeserEms")
## fit a simple hhh4 model
measlesModel <- list(
ar = list(f = ~ 1),
end = list(f = addSeason2formula(~0 + ri(type="iid"), S=1, period=52),
offset = population(measlesWeserEms)),
family = "NegBin1"
)
measlesFit <- hhh4(measlesWeserEms, measlesModel)
## fitted values for a single unit
plot(measlesFit, units=2)
## sum fitted components over all units
plot(measlesFit, total=TRUE)
## 'xaxis' option for a nicely formatted time axis
## default tick locations and labels:
plot(measlesFit, total=TRUE, xaxis=list(epochsAsDate=TRUE, line=1))
## an alternative with monthly ticks:
oopts <- surveillance.options(stsTickFactors = c("%m"=0.75, "%Y" = 1.5))
plot(measlesFit, total=TRUE, xaxis=list(epochsAsDate=TRUE,
xaxis.tickFreq=list("%m"=atChange, "%Y"=atChange),
xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y"))
surveillance.options(oopts)
## plot the multiplicative effect of seasonality
plot(measlesFit, type="season")
## alternative fit with biennial pattern, plotted jointly with original fit
measlesFit2 <- update(measlesFit,
end = list(f = addSeason2formula(~0 + ri(type="iid"), S=2, period=104)))
plotHHH4_season(measlesFit, measlesFit2, components="end", period=104)
## dominant eigenvalue of the Lambda matrix (cf. Held and Paul, 2012)
getMaxEV(measlesFit) # here simply constant and equal to exp(ar.1)
plot(measlesFit, type="maxEV") # not very exciting
## fitted mean components/proportions by district, averaged over time
if (requireNamespace("gridExtra")) {
plot(measlesFit, type="maps", labels=list(cex=0.6),
which=c("endemic", "epi.own"), prop=TRUE, zmax=NA,
main=c("endemic proportion", "autoregressive proportion"))
}
## estimated random intercepts of the endemic component
fixef(measlesFit)["end.ri(iid)"] # global intercept (log-scale)
ranef(measlesFit, tomatrix = TRUE) # zero-mean deviations
ranef(measlesFit, intercept = TRUE) # sum of the above
exp(ranef(measlesFit)) # multiplicative effects
plot(measlesFit, type="ri", component="end",
main="deviations around the endemic intercept (log-scale)")
plot(measlesFit, type="ri", component="end", exp=TRUE,
main="multiplicative effects",
labels=list(font=3, labels="GEN"))
## neighbourhood weights as a function of neighbourhood order
plot(measlesFit, type="neweights") # boring, model has no "ne" component
## fitted values for the 6 regions with most cases and some customization
bigunits <- tail(names(sort(colSums(observed(measlesWeserEms)))), 6)
plot(measlesFit, units=bigunits,
names=measlesWeserEms@map@data[bigunits,"GEN"],
legend=5, legend.args=list(x="top"), xlab="Time (weekly)",
hide0s=TRUE, ylim=c(0,max(observed(measlesWeserEms)[,bigunits])),
start=c(2002,1), end=c(2002,26), par.settings=list(xaxs="i"))
Run the code above in your browser using DataLab