mu <- c(0.1, 1, 3, 6, 3*pi, 100)
size <- 0.5
set.seed(1)
y <- rnbinom(length(mu), mu = mu, size = size)
scores(y, mu = mu, size = size)
scores(y, mu = mu, size = 1) # ses ignores the variance
scores(y, mu = 1, size = size)
## apply a specific scoring rule
scores(y, mu = mu, size = size, which = "rps")
rps(y, mu = mu, size = size)
# failed in surveillance <= 1.19.1
stopifnot(!is.unsorted(rps(3, mu = 10^-(0:8)), strictly = TRUE))
if (FALSE) # rps() gives NA (with a warning) if the NegBin is too wide
rps(1e5, mu = 1e5, size = 1e-5)
Run the code above in your browser using DataLab