data("imdepi")
load(system.file("shapes", "districtsD.RData", package="surveillance"))
## convert imdepi point pattern into multivariate time series
imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1),
neighbourhood = NULL, # not needed here
tiles = districtsD)
## check the overall number of events by district
stopifnot(all.equal(colSums(observed(imdsts)),
c(table(imdepi$events$tile))))
## compare plots of monthly number of cases
opar <- par(mfrow = c(2, 1))
plot(imdepi, "time")
plot(imdsts, type = observed ~ time)
par(opar)
## plot number of cases by district
plot(imdsts, type = observed ~ unit)
## also test conversion to an SIS event history ("epidata") of the "tiles"
if (requireNamespace("intervals")) {
imdepi_short <- subset(imdepi, time < 50) # to reduce the runtime
imdepi_short$stgrid <- subset(imdepi_short$stgrid, start < 50)
imdepidata <- as.epidata(imdepi_short,
tileCentroids = coordinates(districtsD))
summary(imdepidata)
}
Run the code above in your browser using DataLab