## example inspired by help("lapply")
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
## if neither parallel nor verbose then this simply equals lapply()
plapply(x, quantile, probs = 1:3/4, .verbose = FALSE)
## verbose lapply() -- not really useful for such fast computations
res <- plapply(x, quantile, probs = 1:3/4, .verbose = TRUE)
res <- plapply(x, quantile, probs = 1:3/4, .verbose = "|")
res <- plapply(x, quantile, probs = 1:3/4,
.verbose = quote(cat("length(x) =", length(x), "\n")))
## setting the seed for reproducibility of results involving the RNG
samp <- plapply(as.list(1:3), runif, .seed = 1)
## parallel lapply()
res <- plapply(x, quantile, probs = 1:3/4, .parallel = 2, .verbose = FALSE)
## using a predefined cluster
library("parallel")
cl <- makeCluster(getOption("cl.cores", 2))
res <- plapply(x, quantile, probs = 1:3/4, .parallel = cl)
stopCluster(cl)
Run the code above in your browser using DataLab