Learn R Programming

surveillance (version 1.7-0)

twinstim_update: update-method for "twinstim"

Description

Update and (by default) re-fit a "twinstim". This method is especially useful if one wants to add the model environment (which is required for some methods) to a fitted model object a posteriori.

Usage

## S3 method for class 'twinstim':
update(object, endemic, epidemic,
       control.siaf, optim.args, model,
       ..., use.estimates = TRUE, evaluate = TRUE)

Arguments

object
a previous "twinstim" fit.
endemic, epidemic
changes to the formulae -- see update.formula and twinstim.
control.siaf
a list, see twinstim. It will modify the original control.siaf using modifyList.
optim.args
see twinstim. If a list, it will modify the original optim.args using modifyList.
model
see twinstim. If this is the only argument to update, re-fitting is cleverly circumvented.
...
Additional arguments to the call, or arguments with changed values.
use.estimates
logical indicating if the estimates of object should be used as initial values for the new fit (in the start argument of twinstim). Defaults to TRUE.
evaluate
If TRUE (default), evaluate the new call else return the call.

Value

  • If evaluate = TRUE the re-fitted object, otherwise the updated call.

See Also

update.default

Examples

Run this code
data("imdepi")
data("imdepifit")

## add another epidemic covariate (but fix siaf-parameter for speed)
imdepifit2 <- update(imdepifit, epidemic = ~. + log(popdensity),
                     optim.args = list(fixed="e.siaf.1"), cumCIF=FALSE)
  
## compare by AIC
AIC(imdepifit, imdepifit2)

if (surveillance.options("allExamples")) {
  ## enrich the fit by the model environment
  imdepifit <- update(imdepifit, model=TRUE)
  ## this enables, e.g., intensityplot()s and untrimmed R0 estimates
}

Run the code above in your browser using DataLab