Learn R Programming

survey (version 3.3-2)

svyglm: Survey-weighted generalised linear models.

Description

Fit a generalised linear model to data from a complex survey design, with inverse-probability weighting and design-based standard errors.

Usage

## S3 method for class 'survey.design':
svyglm(formula, design, subset=NULL, ...)
## S3 method for class 'svyrep.design':
svyglm(formula, design, subset=NULL, ..., rho=NULL,
return.replicates=FALSE, na.action)
## S3 method for class 'svyglm':
summary(object, correlation = FALSE,  ...)

Arguments

formula
Model formula
design
Survey design from svydesign or svrepdesign. Must contain all variables in the formula
subset
Expression to select a subpopulation
...
Other arguments passed to glm or summary.glm
rho
For replicate BRR designs, to specify the parameter for Fay's variance method, giving weights of rho and 2-rho
return.replicates
Return the replicates as a component of the result?
object
A svyglm object
correlation
Include the correlation matrix of parameters?
na.action
Handling of NAs

Value

  • An object of class svyglm.

Details

There is no anova method for svyglm as the models are not fitted by maximum likelihood. The function regTermTest may be useful for testing sets of regression terms.

See Also

svydesign, svrepdesign,as.svrepdesign, glm, regTermTest

Examples

Run this code
data(api)

  glm(api00~ell+meals+mobility, data=apipop)

  dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
  dclus2<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2)
  rstrat<-as.svrepdesign(dstrat)
  rclus2<-as.svrepdesign(dclus2)

  summary(svyglm(api00~ell+meals+mobility, design=dstrat))
  summary(svyglm(api00~ell+meals+mobility, design=dclus2))
  summary(svyglm(api00~ell+meals+mobility, design=rstrat))
  summary(svyglm(api00~ell+meals+mobility, design=rclus2))

  ## use quasibinomial, quasipoisson to avoid warning messages
  summary(svyglm(sch.wide~ell+meals+mobility, design=dstrat, family=quasibinomial()))

Run the code above in your browser using DataLab