# NOT RUN {
data(scd)
## survey design objects
scddes<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE, fpc=rep(5,6))
scdnofpc<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE)
# convert to BRR replicate weights
scd2brr <- as.svrepdesign(scdnofpc, type="BRR")
# or to Rao-Wu bootstrap
scd2boot <- as.svrepdesign(scdnofpc, type="subboot")
# use BRR replicate weights from Levy and Lemeshow
repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),
c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)
# ratio estimates
svyratio(~alive, ~arrests, design=scddes)
svyratio(~alive, ~arrests, design=scdnofpc)
svyratio(~alive, ~arrests, design=scd2brr)
svyratio(~alive, ~arrests, design=scd2boot)
svyratio(~alive, ~arrests, design=scdrep)
# or a logistic regression
summary(svyglm(cbind(alive,arrests-alive)~1, family=quasibinomial, design=scdnofpc))
summary(svyglm(cbind(alive,arrests-alive)~1, family=quasibinomial, design=scdrep))
# Because no sampling weights are given, can't compute design effects
# without replacement: use deff="replace"
svymean(~alive+arrests, scddes, deff=TRUE)
svymean(~alive+arrests, scddes, deff="replace")
# }
Run the code above in your browser using DataLab