# NOT RUN {
data(api)
dstrat<-svydesign(id=~1, strata=~stype, weight=~pw, fpc=~fpc, data=apistrat)
## fit with glm
m0 <- svyglm(api00~api99+ell,family="gaussian",design=dstrat)
## fit as mle (without gradient)
m1 <- svymle(loglike=dnorm,gradient=NULL, design=dstrat,
formulas=list(mean=api00~api99+ell, sd=~1),
start=list(c(80,1,0),c(20)), log=TRUE)
## with gradient
gr<- function(x,mean,sd,log){
dm<-2*(x - mean)/(2*sd^2)
ds<-(x-mean)^2*(2*(2 * sd))/(2*sd^2)^2 - sqrt(2*pi)/(sd*sqrt(2*pi))
cbind(dm,ds)
}
m2 <- svymle(loglike=dnorm,gradient=gr, design=dstrat,
formulas=list(mean=api00~api99+ell, sd=~1),
start=list(c(80,1,0),c(20)), log=TRUE, method="BFGS")
summary(m0)
summary(m1,stderr="model")
summary(m2)
## Using offsets
m3 <- svymle(loglike=dnorm,gradient=gr, design=dstrat,
formulas=list(mean=api00~api99+offset(ell)+ell, sd=~1),
start=list(c(80,1,0),c(20)), log=TRUE, method="BFGS")
## demonstrating multiple linear predictors
m3 <- svymle(loglike=dnorm,gradient=gr, design=dstrat,
formulas=list(mean=api00~api99+offset(ell)+ell, sd=~stype),
start=list(c(80,1,0),c(20,0,0)), log=TRUE, method="BFGS")
## More complicated censored lognormal data example
## showing that the response variable can be multivariate
data(pbc, package="survival")
pbc$randomized <- with(pbc, !is.na(trt) & trt>0)
biasmodel<-glm(randomized~age*edema,data=pbc)
pbc$randprob<-fitted(biasmodel)
dpbc<-svydesign(id=~1, prob=~randprob, strata=~edema,
data=subset(pbc,randomized))
## censored logNormal likelihood
lcens<-function(x,mean,sd){
ifelse(x[,2]==1,
dnorm(log(x[,1]),mean,sd,log=TRUE),
pnorm(log(x[,1]),mean,sd,log=TRUE,lower.tail=FALSE)
)
}
gcens<- function(x,mean,sd){
dz<- -dnorm(log(x[,1]),mean,sd)/pnorm(log(x[,1]),mean,sd,lower.tail=FALSE)
dm<-ifelse(x[,2]==1,
2*(log(x[,1]) - mean)/(2*sd^2),
dz*-1/sd)
ds<-ifelse(x[,2]==1,
(log(x[,1])-mean)^2*(2*(2 * sd))/(2*sd^2)^2 - sqrt(2*pi)/(sd*sqrt(2*pi)),
ds<- dz*-(log(x[,1])-mean)/(sd*sd))
cbind(dm,ds)
}
m<-svymle(loglike=lcens, gradient=gcens, design=dpbc, method="newuoa",
formulas=list(mean=I(cbind(time,status>0))~bili+protime+albumin,
sd=~1),
start=list(c(10,0,0,0),c(1)))
summary(m)
## the same model, but now specifying the lower bound of zero on the
## log standard deviation
mbox<-svymle(loglike=lcens, gradient=gcens, design=dpbc, method="bobyqa",
formulas=list(mean=I(cbind(time,status>0))~bili+protime+albumin, sd=~1),
lower=list(c(-Inf,-Inf,-Inf,-Inf),0), upper=Inf,
start=list(c(10,0,0,0),c(1)))
## The censored lognormal model is now available in svysurvreg()
summary(svysurvreg(Surv(time,status>0)~bili+protime+albumin,
design=dpbc,dist="lognormal"))
## compare svymle scale value after log transformation
svycontrast(m, quote(log(`sd.(Intercept)`)))
# }
Run the code above in your browser using DataLab